Some Properties of the (p,q)-Fibonacci and (p,q)-Lucas Polynomials

被引:37
|
作者
Lee, GwangYeon [1 ]
Asci, Mustafa [2 ]
机构
[1] Hanseo Univ, Dept Math, Seosan 356706, Chungnam, South Korea
[2] Pamukkale Univ, Sci & Arts Fac, Dept Math, Denizli, Turkey
关键词
LINEAR ALGEBRA; FIBONACCI;
D O I
10.1155/2012/264842
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Riordan arrays are useful for solving the combinatorial sums by the help of generating functions. Many theorems can be easily proved by Riordan arrays. In this paper we consider the Pascal matrix and define a new generalization of Fibonacci polynomials called (p,q)-Fibonacci polynomials. We obtain combinatorial identities and by using Riordanmethodwe get factorizations of Pascal matrix involving (p,q)-Fibonacci polynomials.
引用
收藏
页数:18
相关论文
共 50 条
  • [11] ON THE Q ANALOGUE OF FIBONACCI AND LUCAS MATRICES AND FIBONACCI POLYNOMIALS
    Sahin, Adem
    UTILITAS MATHEMATICA, 2016, 100 : 113 - 125
  • [12] SOME PROPERTIES OF BIVARIATE GAUSSIAN FIBONACCI AND LUCAS p-POLYNOMIALS
    Gurel, Esref
    Asci, Mustafa
    ARS COMBINATORIA, 2018, 137 : 123 - 139
  • [13] SOME RESULTS ON THE q-ANALOGUES OF THE INCOMPLETE FIBONACCI AND LUCAS POLYNOMIALS
    Srivastava, H. M.
    Tuglu, Naim
    Cetin, Mirac
    MISKOLC MATHEMATICAL NOTES, 2019, 20 (01) : 511 - 524
  • [14] Gaussian (p, q)-Jacobsthal and Gaussian (p, q)-Jacobsthal Lucas numbers and their some interesting properties
    Saba, N.
    Boussayoud, A.
    JOURNAL OF MATHEMATICAL PHYSICS, 2022, 63 (11)
  • [15] q-analogs of generalized fibonacci and lucas polynomials
    Jia, C. Z.
    Liu, H. M.
    Wang, T. M.
    FIBONACCI QUARTERLY, 2007, 45 (01): : 26 - 34
  • [16] SOME PROPERTIES AND IDENTITIES FOR (p, q)-GENOCCHI POLYNOMIALS COMBINING (p, q)-COSINE FUNCTION
    Kang, Jung Yoog
    JOURNAL OF APPLIED MATHEMATICS & INFORMATICS, 2022, 40 (1-2): : 233 - 242
  • [17] On Fourier integral transforms for q-Fibonacci and q-Lucas polynomials
    Atakishiyev, Natig
    Franco, Pedro
    Levi, Decio
    Ragnisco, Orlando
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2012, 45 (19)
  • [18] The (p,q)-sine and (p,q)-cosine polynomials and their associated(p,q)-polynomials
    Husain, Saddam
    Khan, Nabiullah
    Usman, Talha
    Choi, Junesang
    ANALYSIS-INTERNATIONAL MATHEMATICAL JOURNAL OF ANALYSIS AND ITS APPLICATIONS, 2024, 44 (01): : 47 - 65
  • [19] SOME EXPLICIT PROPERTIES OF (p, q)-ANALOGUE EULER SUM USING (p, q)-SPECIAL POLYNOMIALS
    Kang, J. Y.
    JOURNAL OF APPLIED MATHEMATICS & INFORMATICS, 2020, 38 (1-2): : 37 - 56
  • [20] On Some Properties of Bivariate Fibonacci and Lucas Polynomials
    Belbachir, Hacene
    Bencherif, Farid
    JOURNAL OF INTEGER SEQUENCES, 2008, 11 (02)