Real-Time Myocardial Segmentation Using Coupled Active Geometric Functions

被引:0
|
作者
Duan, Qi [1 ]
Laine, Andrew F. [1 ]
Pai, Vinay M. [2 ]
机构
[1] Columbia Univ, Dept Biomed Engn, 1210 Amsterdam Ave,MC-8904, New York, NY 10027 USA
[2] SUNY Upstate Med Univ, Dept Radiol, Syracuse, NY 13210 USA
关键词
D O I
10.1109/IEMBS.2008.4649932
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Myocardial segmentation is essential for quantitative evaluation of cardiac functional images. As imaging techniques advance, 3D and 4D image data have become available. These data can provide clinically important cardiac dynamic information at high spatial or temporal resolution. However, the enormous amount of information contained in these data has also raised a challenge for traditional image analysis algorithms in terms of efficiency and clinical workflow. In this context, an automated real-time myocardial segmentation framework based on coupled Active Geometric Functions was proposed and tested on 414 frames of Phase Train Imaging data, a real-time cardiac MR imaging technique, with an average temporal resolution of 2 ms. The performance of myocardial segmentation was visually and quantitatively validated. Implemented in Matlab (c), the current method takes less than 1.2 ms per cardiac phase, allowing realization of true real-time online segmentation.
引用
收藏
页码:3385 / +
页数:2
相关论文
共 50 条
  • [41] Real-time segmentation for tomographic imaging
    Schoonhoven, Richard
    Buurlage, Jan-Willem
    Pelt, Daniel M.
    Batenburg, Kees Joost
    PROCEEDINGS OF THE 2020 IEEE 30TH INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING (MLSP), 2020,
  • [42] Real-Time Image Segmentation on a GPU
    Abramov, Alexey
    Kulvicius, Tomas
    Woergoetter, Florentin
    Dellen, Babette
    FACING THE MULTICORE-CHALLENGE: ASPECTS OF NEW PARADIGMS AND TECHNOLOGIES IN PARALLEL COMPUTING, 2010, 6310 : 131 - +
  • [43] Real-Time Semantic Clothing Segmentation
    Cushen, George. A.
    Nixon, Mark. S.
    ADVANCES IN VISUAL COMPUTING, ISVC 2012, PT I, 2012, 7431 : 272 - 281
  • [44] Real-time adaptive background segmentation
    Butler, D
    Sridharan, S
    Bove, VM
    2003 INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO, VOL III, PROCEEDINGS, 2003, : 341 - 344
  • [45] Sulci Segmentation Using Geometric Active Contours
    Torkaman, Mahsa
    Zhu, Liangjia
    Karasev, Peter
    Tannenbaum, Allen
    MEDICAL IMAGING 2017: IMAGE PROCESSING, 2017, 10133
  • [46] Real-time geometric deformation displacement maps using programmable hardware
    Sagi Schein
    Eran Karpen
    Gershon Elber
    The Visual Computer, 2005, 21 : 791 - 800
  • [47] Real-time geometric deformation displacement maps using programmable hardware
    Schein, S
    Karpen, E
    Elber, G
    VISUAL COMPUTER, 2005, 21 (8-10): : 791 - 800
  • [48] Simulations of Real-Time Geometric and Dosimetic Verification System Using EPID
    Fuangrod, T.
    Woodruff, H.
    VanUytven, E.
    McCurdy, B.
    O'Connor, D.
    Greer, P.
    MEDICAL PHYSICS, 2012, 39 (06) : 3879 - 3879
  • [49] Synthesis of pulsed-coupled neural networks in FPGAs for real-time image segmentation
    Vega-Pineda, Javier
    Chacon-Murguia, Mario I.
    Camarillo-Cisneros, Roberto
    2006 IEEE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORK PROCEEDINGS, VOLS 1-10, 2006, : 4051 - +
  • [50] REAL-TIME OBSTACLE AVOIDANCE USING HARMONIC POTENTIAL FUNCTIONS
    KIM, JO
    KHOSLA, PK
    IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, 1992, 8 (03): : 338 - 349