Real-Time Myocardial Segmentation Using Coupled Active Geometric Functions

被引:0
|
作者
Duan, Qi [1 ]
Laine, Andrew F. [1 ]
Pai, Vinay M. [2 ]
机构
[1] Columbia Univ, Dept Biomed Engn, 1210 Amsterdam Ave,MC-8904, New York, NY 10027 USA
[2] SUNY Upstate Med Univ, Dept Radiol, Syracuse, NY 13210 USA
关键词
D O I
10.1109/IEMBS.2008.4649932
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Myocardial segmentation is essential for quantitative evaluation of cardiac functional images. As imaging techniques advance, 3D and 4D image data have become available. These data can provide clinically important cardiac dynamic information at high spatial or temporal resolution. However, the enormous amount of information contained in these data has also raised a challenge for traditional image analysis algorithms in terms of efficiency and clinical workflow. In this context, an automated real-time myocardial segmentation framework based on coupled Active Geometric Functions was proposed and tested on 414 frames of Phase Train Imaging data, a real-time cardiac MR imaging technique, with an average temporal resolution of 2 ms. The performance of myocardial segmentation was visually and quantitatively validated. Implemented in Matlab (c), the current method takes less than 1.2 ms per cardiac phase, allowing realization of true real-time online segmentation.
引用
收藏
页码:3385 / +
页数:2
相关论文
共 50 条
  • [31] Real-time Color Measurement Using Active Illuminant
    Tominaga, Shoji
    Horiuchi, Takahiko
    Yoshimura, Akihiko
    COLOR IMAGING XV: DISPLAYING, PROCESSING, HARDCOPY, AND APPLICATIONS, 2010, 7528
  • [32] Parallel segmentation network for real-time semantic segmentation
    Chen, Guanke
    Li, Haibin
    Li, Yaqian
    Zhang, Wenming
    Song, Tao
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2025, 148
  • [33] YOLACT Real-time Instance Segmentation
    Bolya, Daniel
    Zhou, Chong
    Xiao, Fanyi
    Lee, Yong Jae
    2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, : 9156 - 9165
  • [34] SDDNet: Real-Time Crack Segmentation
    Choi, Wooram
    Cha, Young-Jin
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2020, 67 (09) : 8016 - 8025
  • [35] Real-Time Prediction of Segmentation Quality
    Robinson, Robert
    Oktay, Ozan
    Bai, Wenjia
    Valindria, Vanya V.
    Sanghvi, Mihir M.
    Aung, Nay
    Paiva, Jose M.
    Zemrak, Filip
    Fung, Kenneth
    Lukaschuk, Elena
    Lee, Aaron M.
    Carapella, Valentina
    Kim, Young Jin
    Kainz, Bernhard
    Piechnik, Stefan K.
    Neubauer, Stefan
    Petersen, Steffen E.
    Page, Chris
    Rueckert, Daniel
    Glocker, Ben
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2018, PT IV, 2018, 11073 : 578 - 585
  • [36] Towards Real-Time Segmentation on the Edge
    Li, Yanyu
    Yang, Changdi
    Zhao, Pu
    Yuan, Geng
    Niu, Wei
    Guan, Jiexiong
    Tang, Hao
    Qin, Minghai
    Jin, Qing
    Ren, Bin
    Lin, Xue
    Wang, Yanzhi
    THIRTY-SEVENTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 37 NO 2, 2023, : 1468 - 1476
  • [37] Real-time portrait segmentation in tensorFlow
    Hodzic, Lejla
    Skejic, Emir
    Demirovic, Damir
    Elektrotehniski Vestnik/Electrotechnical Review, 2021, 88 (03): : 141 - 146
  • [38] Real-time Portrait Segmentation in TensorFlow
    Hodzic, Lejla
    Skejic, Emir
    Demirovic, Damir
    ELEKTROTEHNISKI VESTNIK, 2021, 88 (03): : 141 - 146
  • [39] Real-time adaptive background segmentation
    Butler, D
    Sridharan, S
    Bove, VM
    2003 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOL III, PROCEEDINGS: IMAGE & MULTIDIMENSIONAL SIGNAL PROCESSING SIGNAL, PROCESSING EDUCATION, 2003, : 349 - 352
  • [40] Real-time segmentation of plants and weeds
    Marchant, JA
    Tillett, RD
    Brivot, R
    REAL-TIME IMAGING, 1998, 4 (04) : 243 - 253