Communicating with chaos using two-dimensional symbolic dynamics

被引:40
|
作者
Lai, YC [1 ]
Bollt, E
Grebogi, C
机构
[1] Univ Kansas, Dept Phys & Astron, Lawrence, KS 66045 USA
[2] Univ Kansas, Dept Math, Lawrence, KS 66045 USA
[3] USN Acad, Dept Math, Annapolis, MD 21402 USA
[4] Univ Maryland, Inst Phys Sci & Technol, Dept Math, Inst Plasma Res, College Pk, MD 20742 USA
基金
美国国家科学基金会;
关键词
D O I
10.1016/S0375-9601(99)00175-9
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Symbolic representations of controlled chaotic orbits produced by signal generators can be used for communicating. In this Letter, communicating with chaos is investigated by using more realistic dynamical systems described by two-dimensional invertible maps. The major difficulty is how to specify a generating partition so that a good symbolic dynamics can be defined. A solution is proposed whereby hyperbolic chaotic saddles embedded in the attractor are exploited for digital encoding. Issues addressed include the channel capacity and noise immunity when these saddles are utilized for communication. (C) 1999 Published by Elsevier Science B.V. All rights reserved.
引用
收藏
页码:75 / 81
页数:7
相关论文
共 50 条
  • [41] Dynamics of two-dimensional and quasi-two-dimensional polymers
    Sung, Bong June
    Yethiraj, Arun
    JOURNAL OF CHEMICAL PHYSICS, 2013, 138 (23):
  • [42] SYMBOLIC DYNAMICS APPROACH TO INTERMITTENT CHAOS
    AIZAWA, Y
    PROGRESS OF THEORETICAL PHYSICS, 1983, 70 (05): : 1249 - 1263
  • [43] Applications of symbolic dynamics in chaos synchronization
    Stojanovski, Toni
    Kocarev, Ljupco
    Harris, Richard
    IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 1997, 44 (10): : 1014 - 1018
  • [44] Applications of symbolic dynamics in chaos synchronization
    Stojanovski, T
    Kocarev, L
    Harris, R
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 1997, 44 (10) : 1014 - 1018
  • [45] The dynamics of two-dimensional turbulence excited at two scales using electromagnetic forces
    Habchi, Charbel
    Antar, Ghassan
    PHYSICS OF FLUIDS, 2016, 28 (05)
  • [46] Dynamics of two-dimensional Blaschke products
    Pujals, Enrique R.
    Shub, Michael
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2008, 28 : 575 - 585
  • [47] Probabilistic Universality in Two-Dimensional Dynamics
    M. Lyubich
    M. Martens
    Communications in Mathematical Physics, 2021, 383 : 1295 - 1359
  • [48] CHAOTIC DYNAMICS IN TWO-DIMENSIONAL SUPERIONICS
    KOSTADINOV, IZ
    PETROV, IV
    SOLID STATE IONICS, 1984, 14 (01) : 67 - 72
  • [49] THE DYNAMICS OF TWO-DIMENSIONAL IDEAL MHD
    FRISCH, U
    POUQUET, A
    SULEM, PL
    MENEGUZZI, M
    JOURNAL DE MECANIQUE THEORIQUE ET APPLIQUEE, 1983, : 191 - 216
  • [50] THE DYNAMICS OF TWO-DIMENSIONAL VORTEX MOTION
    CHERNOUSENKO, VM
    CHERNENKO, IV
    CHERNYSHENKO, SV
    PHYSICA SCRIPTA, 1988, 38 (05): : 721 - 723