Communicating with chaos using two-dimensional symbolic dynamics

被引:40
|
作者
Lai, YC [1 ]
Bollt, E
Grebogi, C
机构
[1] Univ Kansas, Dept Phys & Astron, Lawrence, KS 66045 USA
[2] Univ Kansas, Dept Math, Lawrence, KS 66045 USA
[3] USN Acad, Dept Math, Annapolis, MD 21402 USA
[4] Univ Maryland, Inst Phys Sci & Technol, Dept Math, Inst Plasma Res, College Pk, MD 20742 USA
基金
美国国家科学基金会;
关键词
D O I
10.1016/S0375-9601(99)00175-9
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Symbolic representations of controlled chaotic orbits produced by signal generators can be used for communicating. In this Letter, communicating with chaos is investigated by using more realistic dynamical systems described by two-dimensional invertible maps. The major difficulty is how to specify a generating partition so that a good symbolic dynamics can be defined. A solution is proposed whereby hyperbolic chaotic saddles embedded in the attractor are exploited for digital encoding. Issues addressed include the channel capacity and noise immunity when these saddles are utilized for communication. (C) 1999 Published by Elsevier Science B.V. All rights reserved.
引用
收藏
页码:75 / 81
页数:7
相关论文
共 50 条
  • [31] Transition to chaos in a confined two-dimensional fluid flow
    Molenaar, D
    Clercx, HJH
    van Heijst, GJF
    PHYSICAL REVIEW LETTERS, 2005, 95 (10)
  • [32] Chaos in two-dimensional φ3 theory with oscillator modes
    Yahiro, M
    Kaminaga, Y
    Saito, Y
    Ohtsubo, SI
    PROGRESS OF THEORETICAL PHYSICS, 2003, 109 (03): : 313 - 331
  • [33] Taming chaos by impurities in two-dimensional oscillates arrays
    Weiss, M
    Kottos, T
    Geisel, T
    PHYSICAL REVIEW E, 2001, 63 (05):
  • [34] Chaos and fractal of the general two-dimensional quadratic map
    Wang, Xingyuan
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2008, 22 (20): : 3461 - 3471
  • [35] Chaos in a Two-Dimensional Magneto-Hydrodynamic System
    Bagnoli, F.
    Rechtman, R.
    CELLULAR AUTOMATA, ACRI 2024, 2024, 14978 : 96 - 106
  • [36] Modeling two-dimensional fluid flows with chaos theory
    Sommerer, JC
    Ott, E
    Tel, T
    JOHNS HOPKINS APL TECHNICAL DIGEST, 1997, 18 (02): : 193 - 203
  • [37] Two-dimensional constrained chaos and industrial revolution cycles
    Yano, Makoto
    Furukawa, Yuichi
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2023, 120 (05)
  • [38] Two-Dimensional Chaos: The Baker Map Under Control
    Yu. A. Kuperin
    D. A. Pyatkin
    Journal of Mathematical Sciences, 2005, 128 (2) : 2798 - 2802
  • [39] Simulation of pedestrian dynamics using a two-dimensional cellular automaton
    Burstedde, C
    Klauck, K
    Schadschneider, A
    Zittartz, J
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2001, 295 (3-4) : 507 - 525
  • [40] Lagrangian chaos in confined two-dimensional oscillatory convection
    Oteski, L.
    Duguet, Y.
    Pastur, L. R.
    JOURNAL OF FLUID MECHANICS, 2014, 759 : 489 - 519