Connectivity by geodesics in open subsets of globally hyperbolic spacetimes

被引:1
|
作者
Bartolo, Rossella [1 ]
Candela, Anna Maria [2 ]
Luis Flores, Jose [3 ]
机构
[1] Politecn Bari, Dipartimento Meccan Matemat & Management, Via E Orabona 4, I-70125 Bari, Italy
[2] Univ Bari Aldo Moro, Dipartimento Matemat, I-70125 Bari, Italy
[3] Univ Malaga, Fac Ciencias, Dept Algebra Geometria & Topol, E-29071 Malaga, Spain
关键词
Geodesic connectedness; global hyperbolicity; Killing vector field; Cauchy surface; stationary spacetime; generalized plane wave; CAUCHY HYPERSURFACES; EXISTENCE; MANIFOLDS; BOUNDARY;
D O I
10.1142/S0219887815600099
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We discuss the geodesic connectedness problem in open subsets with convex boundary of globally hyperbolic spacetimes endowed with a complete, timelike or lightlike, Killing vector field. Furthermore, we furnish applications to generalized plane waves.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Mixed gravitational field equations on globally hyperbolic spacetimes
    Barletta, Elisabetta
    Dragomir, Sorin
    Rovenski, Vladimir
    Soret, Marc
    CLASSICAL AND QUANTUM GRAVITY, 2013, 30 (08)
  • [32] Semiclassical gravity with a conformally covariant field in globally hyperbolic spacetimes
    Juarez-Aubry, Benito A.
    Modak, Sujoy K.
    JOURNAL OF MATHEMATICAL PHYSICS, 2022, 63 (09)
  • [33] NONISOMETRIC VACUUM EXTENSIONS OF VACUUM MAXIMAL GLOBALLY HYPERBOLIC SPACETIMES
    CHRUSCIEL, PT
    ISENBERG, J
    PHYSICAL REVIEW D, 1993, 48 (04): : 1616 - 1628
  • [34] RELATIVE CAUCHY EVOLUTION FOR THE VECTOR POTENTIAL ON GLOBALLY HYPERBOLIC SPACETIMES
    Benini, Marco
    MATHEMATICS AND MECHANICS OF COMPLEX SYSTEMS, 2015, 3 (02) : 177 - 210
  • [35] Globally hyperbolic spacetimes can be defined without the 'causal' condition
    Hounnonkpe, R. A.
    Minguzzi, E.
    CLASSICAL AND QUANTUM GRAVITY, 2019, 36 (19)
  • [36] Do link polynomials detect causality in globally hyperbolic spacetimes?
    Allen, Samantha
    Swenberg, Jacob H.
    JOURNAL OF MATHEMATICAL PHYSICS, 2021, 62 (03)
  • [37] On Maxwell’s Equations on Globally Hyperbolic Spacetimes with Timelike Boundary
    Claudio Dappiaggi
    Nicolò Drago
    Rubens Longhi
    Annales Henri Poincaré, 2020, 21 : 2367 - 2409
  • [38] Smoothness of time functions and the metric splitting of globally hyperbolic spacetimes
    Bernal, AN
    Sánchez, M
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2005, 257 (01) : 43 - 50
  • [39] Smoothness of Time Functions and the Metric Splitting of Globally Hyperbolic Spacetimes
    Antonio N. Bernal
    Miguel Sánchez
    Communications in Mathematical Physics, 2005, 257 : 43 - 50
  • [40] On Maxwell's Equations on Globally Hyperbolic Spacetimes with Timelike Boundary
    Dappiaggi, Claudio
    Drago, Nicolo
    Longhi, Rubens
    ANNALES HENRI POINCARE, 2020, 21 (07): : 2367 - 2409