NONISOMETRIC VACUUM EXTENSIONS OF VACUUM MAXIMAL GLOBALLY HYPERBOLIC SPACETIMES

被引:41
|
作者
CHRUSCIEL, PT
ISENBERG, J
机构
[1] UNIV OREGON,DEPT MATH,EUGENE,OR 97403
[2] UNIV OREGON,INST THEORET SCI,EUGENE,OR 97403
来源
PHYSICAL REVIEW D | 1993年 / 48卷 / 04期
关键词
D O I
10.1103/PhysRevD.48.1616
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We discuss a number of familes of maximal globally hyperbolic vacuum spacetimes-Taub, Misner, and polarized Gowdy-and their nonglobally hyperbolic extensions. We show that many of the familiar extensions are isometric, but we also show that in the Taub and Gowdy familes there are nonisometric maximal extensions. In the latter family, we show there are spacetimes that have an arbitrarily large number of nonisometric maximal extensions.
引用
收藏
页码:1616 / 1628
页数:13
相关论文
共 50 条
  • [1] On maximal globally hyperbolic vacuum space-times
    Chrusciel, Piotr T.
    JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2013, 14 (01) : 325 - 353
  • [2] On maximal globally hyperbolic vacuum space-times
    Piotr T. Chruściel
    Journal of Fixed Point Theory and Applications, 2013, 14 : 325 - 353
  • [3] Compact maximal hypersurfaces in globally hyperbolic spacetimes
    Aledo, Juan A.
    Rubio, Rafael M.
    Salamanca, Juan J.
    CLASSICAL AND QUANTUM GRAVITY, 2019, 36 (01)
  • [4] Globally Hyperbolic Spacetimes as Posets
    Sharifzadeh, Mehdi
    Abad, Masoud Bahrami Seif
    MATHEMATICAL PHYSICS ANALYSIS AND GEOMETRY, 2019, 22 (04)
  • [5] Globally Hyperbolic Spacetimes as Posets
    Mehdi Sharifzadeh
    Masoud Bahrami Seif Abad
    Mathematical Physics, Analysis and Geometry, 2019, 22
  • [6] Causal bubbles in globally hyperbolic spacetimes
    Leonardo García-Heveling
    Elefterios Soultanis
    General Relativity and Gravitation, 2022, 54
  • [8] Abelian Duality on Globally Hyperbolic Spacetimes
    Becker, Christian
    Benini, Marco
    Schenkel, Alexander
    Szabo, Richard J.
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2017, 349 (01) : 361 - 392
  • [9] A CLOSURE RESULT FOR GLOBALLY HYPERBOLIC SPACETIMES
    Catino, Giovanni
    Roncoroni, Alberto
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2024,
  • [10] Abelian Duality on Globally Hyperbolic Spacetimes
    Christian Becker
    Marco Benini
    Alexander Schenkel
    Richard J. Szabo
    Communications in Mathematical Physics, 2017, 349 : 361 - 392