NONISOMETRIC VACUUM EXTENSIONS OF VACUUM MAXIMAL GLOBALLY HYPERBOLIC SPACETIMES

被引:41
|
作者
CHRUSCIEL, PT
ISENBERG, J
机构
[1] UNIV OREGON,DEPT MATH,EUGENE,OR 97403
[2] UNIV OREGON,INST THEORET SCI,EUGENE,OR 97403
来源
PHYSICAL REVIEW D | 1993年 / 48卷 / 04期
关键词
D O I
10.1103/PhysRevD.48.1616
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We discuss a number of familes of maximal globally hyperbolic vacuum spacetimes-Taub, Misner, and polarized Gowdy-and their nonglobally hyperbolic extensions. We show that many of the familiar extensions are isometric, but we also show that in the Taub and Gowdy familes there are nonisometric maximal extensions. In the latter family, we show there are spacetimes that have an arbitrarily large number of nonisometric maximal extensions.
引用
收藏
页码:1616 / 1628
页数:13
相关论文
共 50 条
  • [21] On complete trapped submanifolds in globally hyperbolic spacetimes
    Albujer, Alma L.
    Herrera, Jonatan
    Rubio, Rafael M.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2023, 56 (34)
  • [22] Globally hyperbolic spacetimes: slicings, boundaries and counterexamples
    Sanchez, Miguel
    GENERAL RELATIVITY AND GRAVITATION, 2022, 54 (10)
  • [23] Globally hyperbolic spacetimes: slicings, boundaries and counterexamples
    Miguel Sánchez
    General Relativity and Gravitation, 2022, 54
  • [24] Foliations of globally hyperbolic spacetimes by CMC hypersurfaces
    Thierry, BA
    Béguin, F
    Zeghib, A
    COMPTES RENDUS MATHEMATIQUE, 2003, 336 (03) : 245 - 250
  • [25] Causal Isomorphism Between Globally Hyperbolic Spacetimes
    Abad, Masoud Bahrami Seif
    Sharifzadeh, Mehdi
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2022, 48 (06) : 3059 - 3075
  • [26] Causal Isomorphism Between Globally Hyperbolic Spacetimes
    Masoud Bahrami Seif Abad
    Mehdi Sharifzadeh
    Bulletin of the Iranian Mathematical Society, 2022, 48 : 3059 - 3075
  • [27] Global wave parametrices on globally hyperbolic spacetimes
    Capoferri, Matteo
    Dappiaggi, Claudio
    Drago, Nicolo
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2020, 490 (02)
  • [28] A Construction of Collapsing Spacetimes in Vacuum
    Junbin Li
    He Mei
    Communications in Mathematical Physics, 2020, 378 : 1343 - 1389
  • [29] A Construction of Collapsing Spacetimes in Vacuum
    Li, Junbin
    Mei, He
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2020, 378 (02) : 1343 - 1389
  • [30] TRAPPED SURFACES IN VACUUM SPACETIMES
    BEIG, R
    MURCHADHA, NO
    CLASSICAL AND QUANTUM GRAVITY, 1994, 11 (02) : 419 - 430