Divisibility properties of Kloosterman sums over finite fields of characteristic two

被引:4
|
作者
Charpin, Pascale [1 ]
Helleseth, Tor [2 ]
Zinoviev, Victor [3 ]
机构
[1] INRIA, BP 105, F-78153 Le Chesnay, France
[2] Univ Bergen, Selmer Ctr, Dept Informat, N-5020 Bergen, Norway
[3] Russian Acad Sci, Inst Problems Informat Transmiss, Moscow 101447, Russia
来源
2008 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY PROCEEDINGS, VOLS 1-6 | 2008年
关键词
BCH code; coset weight distribution; Kloosterman sum; cubic sum; inverse cubic sum;
D O I
10.1109/ISIT.2008.4595463
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Let K(a) be the so-called classical Kloosterman sums over F-2m, where m is even. In this paper, we compute K(a) modulo 24, completing our previous results for odd m. We extensively study the links between K(a) and other exponential sums, in particular with the cubic sums. We point out (as we did for odd m) that the values K(a) are related with cosets of weight 4 of primitive narrow sense extended BCH codes of length n = 2(m) and minimum distance 8.
引用
收藏
页码:2608 / +
页数:2
相关论文
共 50 条