Divisibility properties of Kloosterman sums over finite fields of characteristic two

被引:4
|
作者
Charpin, Pascale [1 ]
Helleseth, Tor [2 ]
Zinoviev, Victor [3 ]
机构
[1] INRIA, BP 105, F-78153 Le Chesnay, France
[2] Univ Bergen, Selmer Ctr, Dept Informat, N-5020 Bergen, Norway
[3] Russian Acad Sci, Inst Problems Informat Transmiss, Moscow 101447, Russia
来源
2008 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY PROCEEDINGS, VOLS 1-6 | 2008年
关键词
BCH code; coset weight distribution; Kloosterman sum; cubic sum; inverse cubic sum;
D O I
10.1109/ISIT.2008.4595463
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Let K(a) be the so-called classical Kloosterman sums over F-2m, where m is even. In this paper, we compute K(a) modulo 24, completing our previous results for odd m. We extensively study the links between K(a) and other exponential sums, in particular with the cubic sums. We point out (as we did for odd m) that the values K(a) are related with cosets of weight 4 of primitive narrow sense extended BCH codes of length n = 2(m) and minimum distance 8.
引用
收藏
页码:2608 / +
页数:2
相关论文
共 50 条
  • [11] Degree matrices and divisibility of exponential sums over finite fields
    Chen, Jianming
    Cao, Wei
    ARCHIV DER MATHEMATIK, 2010, 94 (05) : 435 - 441
  • [12] DIVISIBILITY OF EXPONENTIAL SUMS AND SOLVABILITY OF CERTAIN EQUATIONS OVER FINITE FIELDS
    Castro, Francis N.
    Rubio, Ivelisse
    Vega, Jose M.
    QUARTERLY JOURNAL OF MATHEMATICS, 2009, 60 (02): : 169 - 181
  • [13] On divisibility of exponential sums of polynomials of special type over fields of characteristic 2
    Bassalygo, L. A.
    Zinoviev, V. A.
    DESIGNS CODES AND CRYPTOGRAPHY, 2013, 66 (1-3) : 129 - 143
  • [14] On divisibility of exponential sums of polynomials of special type over fields of characteristic 2
    L. A. Bassalygo
    V. A. Zinoviev
    Designs, Codes and Cryptography, 2013, 66 : 129 - 143
  • [15] Kloosterman sums over finite Frobenius rings
    Nica, Bogdan
    ACTA ARITHMETICA, 2021, 201 (04) : 391 - 420
  • [16] Kloosterman sums on number fields
    Pacharoni, I
    COMMUNICATIONS IN ALGEBRA, 1998, 26 (08) : 2653 - 2667
  • [17] A NOTE ON THE IRRATIONALITY OF ANGLES OF KLOOSTERMAN SUMS OVER FINITE FIELD
    Borissov, Lyubomir
    Borissov, Yuri
    COMPTES RENDUS DE L ACADEMIE BULGARE DES SCIENCES, 2022, 75 (05): : 649 - 654
  • [18] On properties of the Weil sums over finite fields and finite Abelian groups
    Logachev, O.A.
    Salnikov, A.A.
    Yashchenko, V.V.
    Discrete Mathematics and Applications, 9 (03): : 245 - 266
  • [19] On the elliptic divisibility sequences over finite fields
    Bizim, Osman
    World Academy of Science, Engineering and Technology, 2009, 35 : 1011 - 1015
  • [20] Sum-product Estimates in Finite Fields via Kloosterman Sums
    Hart, Derrick
    Iosevich, Alex
    Solymosi, Jozsef
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2007, 2007