Divisibility properties of Kloosterman sums over finite fields of characteristic two

被引:4
|
作者
Charpin, Pascale [1 ]
Helleseth, Tor [2 ]
Zinoviev, Victor [3 ]
机构
[1] INRIA, BP 105, F-78153 Le Chesnay, France
[2] Univ Bergen, Selmer Ctr, Dept Informat, N-5020 Bergen, Norway
[3] Russian Acad Sci, Inst Problems Informat Transmiss, Moscow 101447, Russia
关键词
BCH code; coset weight distribution; Kloosterman sum; cubic sum; inverse cubic sum;
D O I
10.1109/ISIT.2008.4595463
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Let K(a) be the so-called classical Kloosterman sums over F-2m, where m is even. In this paper, we compute K(a) modulo 24, completing our previous results for odd m. We extensively study the links between K(a) and other exponential sums, in particular with the cubic sums. We point out (as we did for odd m) that the values K(a) are related with cosets of weight 4 of primitive narrow sense extended BCH codes of length n = 2(m) and minimum distance 8.
引用
收藏
页码:2608 / +
页数:2
相关论文
共 50 条
  • [1] On Kloosterman sums over finite fields of characteristic 3
    Bassalygo, L. A.
    Zinoviev, V. A.
    DISCRETE APPLIED MATHEMATICS, 2017, 216 : 518 - 523
  • [2] On divisibility of exponential sums over finite fields of characteristic 2
    Castro, FN
    Moreno, O
    FINITE FIELDS WITH APPLICATIONS TO CODING THEORY, CRYPTOGRAPHY AND RELATED AREAS, 2002, : 70 - 79
  • [3] A CONGRUENCE MODULO 4 FOR KLOOSTERMAN SUMS OVER FINITE FIELDS OF CHARACTERISTIC 3
    Sin, Changhyon
    COMPTES RENDUS DE L ACADEMIE BULGARE DES SCIENCES, 2011, 64 (01): : 5 - 10
  • [4] On inverted Kloosterman sums over finite fields
    Xin Lin
    Daqing Wan
    Mathematische Zeitschrift, 2024, 306
  • [5] On inverted Kloosterman sums over finite fields
    Lin, Xin
    Wan, Daqing
    MATHEMATISCHE ZEITSCHRIFT, 2024, 306 (04)
  • [6] Short Kloosterman sums for polynomials over finite fields
    Banks, WD
    Harcharras, A
    Shparlinski, IE
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2003, 55 (02): : 225 - 246
  • [7] Divisibility properties of classical binary Kloosterman sums
    Charpin, Pascale
    Helleseth, Tor
    Zinoviev, Victor
    DISCRETE MATHEMATICS, 2009, 309 (12) : 3975 - 3984
  • [8] On a new identity for Kloosterman sums and nonlinear system of equations over finite fields of characteristic 2
    Helleseth, T
    Zinoviev, V
    DISCRETE MATHEMATICS, 2004, 274 (1-3) : 109 - 124
  • [9] Double sums of Kloosterman sums in finite fields
    Macourt, Simon
    Shparlinski, Igor E.
    FINITE FIELDS AND THEIR APPLICATIONS, 2019, 60
  • [10] Degree matrices and divisibility of exponential sums over finite fields
    Jianming Chen
    Wei Cao
    Archiv der Mathematik, 2010, 94 : 435 - 441