Electrochemical activation, voltage decay and hysteresis of Li-rich layered cathode probed by various cobalt content

被引:40
|
作者
Wu, Yingqiang [1 ,2 ]
Xie, Leqiong [2 ]
He, Xiangming [3 ]
Zhuo, Linhai [4 ]
Wang, Limin [1 ]
Ming, Jun [1 ,5 ]
机构
[1] Chinese Acad Sci, Changchun Inst Appl Chem, State Key Lab Rare Earth Resource Utilizat, Changchun 130022, Jilin, Peoples R China
[2] Huadong Inst Lithium Ion Battery, Zhangjiagang 215600, Peoples R China
[3] Tsinghua Univ, Inst Nucl & New Energy Technol, Beijing 100084, Peoples R China
[4] Taishan Univ, Coll Chem & Chem Engn, Tai An 271021, Shandong, Peoples R China
[5] King Abdullah Univ Sci & Technol, Phys Sci & Engn Div, Thuwal 239556900, Saudi Arabia
关键词
Cathode; Lithium battery; Cobalt-doping; Electrochemical activation; Voltage decay; LITHIUM; PERFORMANCE; ELECTRODES; CHEMISTRY; BATTERIES; ENERGY; OXIDES; FADE; MN; NI;
D O I
10.1016/j.electacta.2018.01.181
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
The high capacity of Li-rich layered cathode materials have attracted great attention for the greater energy density lithium ion (Li-ion) batteries, but the understanding of knowledge associated with electrochemical behaviours are still needed to improve their performances further. In this study, different amount of Co content is designed in Li-rich layered compounds (0.5Li(2)MnO(3)center dot 0.5LiMn(0.5-x)Ni(0.5-x)Co(2x)O(2), 0 <= x <= 0.2), and the stepwise electrochemical activation process is applied to explore the features. We discover that the substitution of Co3+ ions can accelerate the electrochemical activation of Li2MnO3 component, and the Co-doped compound delivers much higher capacities even they suffer an apparent voltage decay comparing to the Co-free one. Besides, a fast metal ions migration exists (e. g., from the metastable tetrahedral site to the lower energy cubic site) in initial dozens of cycles (e. g., 30 cycles at 0.1C); thereafter, they likely return to the original octahedral site, as demonstrated in the voltage decay and hysteresis analysis. (c) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:115 / 120
页数:6
相关论文
共 50 条
  • [1] A Li-rich layered oxide cathode with negligible voltage decay
    Luo, Dong
    Zhu, He
    Xia, Yi
    Yin, Zijia
    Qin, Yan
    Li, Tianyi
    Zhang, Qinghua
    Gu, Lin
    Peng, Yong
    Zhang, Junwei
    Wiaderek, Kamila M.
    Huang, Yalan
    Yang, Tingting
    Tang, Yu
    Lan, Si
    Ren, Yang
    Lu, Wenquan
    Wolverton, Christopher M.
    Liu, Qi
    NATURE ENERGY, 2023, 8 (10) : 1078 - 1087
  • [2] A Li-rich layered oxide cathode with negligible voltage decay
    Dong Luo
    He Zhu
    Yi Xia
    Zijia Yin
    Yan Qin
    Tianyi Li
    Qinghua Zhang
    Lin Gu
    Yong Peng
    Junwei Zhang
    Kamila M. Wiaderek
    Yalan Huang
    Tingting Yang
    Yu Tang
    Si Lan
    Yang Ren
    Wenquan Lu
    Christopher M. Wolverton
    Qi Liu
    Nature Energy, 2023, 8 : 1078 - 1087
  • [3] Voltage Decay in Layered Li-Rich Mn-Based Cathode Materials
    Kun Zhang
    Biao Li
    Yuxuan Zuo
    Jin Song
    Huaifang Shang
    Fanghua Ning
    Dingguo Xia
    Electrochemical Energy Reviews, 2019, 2 : 606 - 623
  • [4] Voltage Decay in Layered Li-Rich Mn-Based Cathode Materials
    Zhang, Kun
    Li, Biao
    Zuo, Yuxuan
    Song, Jin
    Shang, Huaifang
    Ning, Fanghua
    Xia, Dingguo
    ELECTROCHEMICAL ENERGY REVIEWS, 2019, 2 (04) : 606 - 623
  • [5] Sufficient Oxygen Redox Activation against Voltage Decay in Li-Rich Layered Oxide Cathode Materials
    Zhou, Yuhuan
    Cui, Hongfu
    Qiu, Bao
    Xia, Yuanhua
    Yin, Chong
    Wan, Liyang
    Shi, Zhepu
    Liu, Zhaoping
    ACS MATERIALS LETTERS, 2021, 3 (04): : 433 - 441
  • [6] Unraveling the Voltage Decay Phenomenon in Li-Rich Layered Oxide Cathode of No Oxygen Activity
    Li, Ning
    Hwang, Sooyeon
    Sun, Meiling
    Fu, Yanbao
    Battaglia, Vincent S.
    Su, Dong
    Tong, Wei
    ADVANCED ENERGY MATERIALS, 2019, 9 (47)
  • [7] Probing the initiation of voltage decay in Li-rich layered cathode materials at the atomic scale
    Wu, Yan
    Ma, Cheng
    Yang, Jihui
    Li, Zicheng
    Allard, Lawrence F.
    Liang, Chengdu
    Chi, Miaofang
    JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (10) : 5385 - 5391
  • [8] Controllable oxygen vacancies (in surface and bulk) to suppress the voltage decay of Li-rich layered cathode
    Li, Tianle
    Mao, Yangyang
    Liu, Xuefei
    Wang, Wenju
    Li, Yuqian
    Xiao, Yupeng
    Hao, Xiaoqian
    Zhu, Tianjiao
    You, Jiyuan
    Zang, Jinqi
    APPLIED SURFACE SCIENCE, 2024, 657
  • [9] Mitigation of voltage decay in Li-rich layered oxides as cathode materials for lithium-ion batteries
    Hu, Wenhui
    Zhang, Youxiang
    Zan, Ling
    Cong, Hengjiang
    NANO RESEARCH, 2020, 13 (01) : 151 - 159
  • [10] Mitigation of voltage decay in Li-rich layered oxides as cathode materials for lithium-ion batteries
    Wenhui Hu
    Youxiang Zhang
    Ling Zan
    Hengjiang Cong
    Nano Research, 2020, 13 : 151 - 159