Electrochemical activation, voltage decay and hysteresis of Li-rich layered cathode probed by various cobalt content

被引:40
|
作者
Wu, Yingqiang [1 ,2 ]
Xie, Leqiong [2 ]
He, Xiangming [3 ]
Zhuo, Linhai [4 ]
Wang, Limin [1 ]
Ming, Jun [1 ,5 ]
机构
[1] Chinese Acad Sci, Changchun Inst Appl Chem, State Key Lab Rare Earth Resource Utilizat, Changchun 130022, Jilin, Peoples R China
[2] Huadong Inst Lithium Ion Battery, Zhangjiagang 215600, Peoples R China
[3] Tsinghua Univ, Inst Nucl & New Energy Technol, Beijing 100084, Peoples R China
[4] Taishan Univ, Coll Chem & Chem Engn, Tai An 271021, Shandong, Peoples R China
[5] King Abdullah Univ Sci & Technol, Phys Sci & Engn Div, Thuwal 239556900, Saudi Arabia
关键词
Cathode; Lithium battery; Cobalt-doping; Electrochemical activation; Voltage decay; LITHIUM; PERFORMANCE; ELECTRODES; CHEMISTRY; BATTERIES; ENERGY; OXIDES; FADE; MN; NI;
D O I
10.1016/j.electacta.2018.01.181
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
The high capacity of Li-rich layered cathode materials have attracted great attention for the greater energy density lithium ion (Li-ion) batteries, but the understanding of knowledge associated with electrochemical behaviours are still needed to improve their performances further. In this study, different amount of Co content is designed in Li-rich layered compounds (0.5Li(2)MnO(3)center dot 0.5LiMn(0.5-x)Ni(0.5-x)Co(2x)O(2), 0 <= x <= 0.2), and the stepwise electrochemical activation process is applied to explore the features. We discover that the substitution of Co3+ ions can accelerate the electrochemical activation of Li2MnO3 component, and the Co-doped compound delivers much higher capacities even they suffer an apparent voltage decay comparing to the Co-free one. Besides, a fast metal ions migration exists (e. g., from the metastable tetrahedral site to the lower energy cubic site) in initial dozens of cycles (e. g., 30 cycles at 0.1C); thereafter, they likely return to the original octahedral site, as demonstrated in the voltage decay and hysteresis analysis. (c) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:115 / 120
页数:6
相关论文
共 50 条
  • [21] Effects of Lithium Source and Content on the Properties of Li-Rich Layered Oxide Cathode Materials
    Wang, Yufan
    Hietaniemi, Marianna
    Valikangas, Juho
    Hu, Tao
    Tynjala, Pekka
    Lassi, Ulla
    CHEMENGINEERING, 2023, 7 (01)
  • [22] Revealing the Effect of High Ni Content in Li-Rich Cathode Materials: Mitigating Voltage Decay or Increasing Intrinsic Reactivity
    Ju, Xiaokang
    Hou, Xu
    Liu, Zhongqing
    Du, Leilei
    Zhang, Li
    Xie, Tangtang
    Paillard, Elie
    Wang, Taihong
    Winter, Martin
    Li, Jie
    SMALL, 2023, 19 (20)
  • [23] Inhibiting collective cation migration in Li-rich cathode materials as a strategy to mitigate voltage hysteresis
    Huang, Jianping
    Ouyang, Bin
    Zhang, Yaqian
    Yin, Liang
    Kwon, Deok-Hwang
    Cai, Zijian
    Lun, Zhengyan
    Zeng, Guobo
    Balasubramanian, Mahalingam
    Ceder, Gerbrand
    NATURE MATERIALS, 2023, 22 (03) : 353 - +
  • [24] Inhibiting collective cation migration in Li-rich cathode materials as a strategy to mitigate voltage hysteresis
    Jianping Huang
    Bin Ouyang
    Yaqian Zhang
    Liang Yin
    Deok-Hwang Kwon
    Zijian Cai
    Zhengyan Lun
    Guobo Zeng
    Mahalingam Balasubramanian
    Gerbrand Ceder
    Nature Materials, 2023, 22 : 353 - 361
  • [25] Mitigating Capacity and Voltage Decay in Li-Rich Cathode Via Dual-Phase Design
    Li, Tianle
    Xiao, Yupeng
    Zhu, Tianjiao
    Li, Yuqian
    Wang, Wenju
    SMALL METHODS, 2024,
  • [26] INVESTIGATION OF CAPACITY FADE AND VOLTAGE DECAY IN Li-RICH CATHODE MATERIALS WITH DIFFERENT PHASE COMPOSITION
    Pechen, Lidia
    Makhonina, Elena
    Volkov, Vyacheslav
    Rumyantsev, Alexander
    Koshtyal, Yury
    Politov, Yury
    Pervov, Vladislav
    Eremenko, Igor
    11TH INTERNATIONAL CONFERENCE ON NANOMATERIALS - RESEARCH & APPLICATION (NANOCON 2019), 2020, : 144 - 149
  • [27] Origin of structural degradation in Li-rich layered oxide cathode
    Tongchao Liu
    Jiajie Liu
    Luxi Li
    Lei Yu
    Jiecheng Diao
    Tao Zhou
    Shunning Li
    Alvin Dai
    Wenguang Zhao
    Shenyang Xu
    Yang Ren
    Liguang Wang
    Tianpin Wu
    Rui Qi
    Yinguo Xiao
    Jiaxin Zheng
    Wonsuk Cha
    Ross Harder
    Ian Robinson
    Jianguo Wen
    Jun Lu
    Feng Pan
    Khalil Amine
    Nature, 2022, 606 : 305 - 312
  • [28] On the disparity in reporting Li-rich layered oxide cathode materials
    Lin, Tongen
    Seaby, Trent
    Huang, Xia
    Wang, Lianzhou
    CHEMICAL COMMUNICATIONS, 2023, 59 (20) : 2888 - 2902
  • [29] Li-Rich Layered Cathode Materials: Transition Metals in Transit
    Malik, Rahul
    JOULE, 2017, 1 (04) : 647 - 648
  • [30] Template-determined microstructure and electrochemical performances of Li-rich layered metal oxide cathode
    Tian, Yuanyuan
    Chen, Min
    Xue, Shida
    Cai, Youxuan
    Huang, Qiming
    Liu, Xiang
    Li, Weishan
    JOURNAL OF POWER SOURCES, 2018, 401 : 343 - 353