Mitigation of voltage decay in Li-rich layered oxides as cathode materials for lithium-ion batteries

被引:18
|
作者
Hu, Wenhui [1 ]
Zhang, Youxiang [1 ,2 ]
Zan, Ling [1 ]
Cong, Hengjiang [1 ]
机构
[1] Wuhan Univ, Coll Chem & Mol Sci, Wuhan 430072, Peoples R China
[2] Wuhan Univ, Shenzhen Res Inst, Shenzhen 518000, Peoples R China
基金
中国国家自然科学基金;
关键词
lithium ion batteries; cathode; lithium-rich layered oxides; voltage decay; Li-1; 17Mn(0); 50Ni(0); 24Co(0); 09O(2); HIGH-CAPACITY; HIGH-ENERGY; COMPOSITE CATHODE; ANIONIC REDOX; ELECTRODES; ORIGIN; FADE; MN; NI; TRANSFORMATION;
D O I
10.1007/s12274-019-2588-0
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Lithium-rich layered oxides (LLOs) have been extensively studied as cathode materials for lithium-ion batteries (LIBs) by researchers all over the world in the past decades due to their high specific capacities and high charge-discharge voltages. However, as cathode materials LLOs have disadvantages of significant voltage and capacity decays during the charge-discharge cycling. It was shown in the past that fine-tuning of structures and compositions was critical to the performances of this kind of materials. In this report, LLOs with target composition of Li1.17Mn0.50Ni0.24Co0.09O2 were prepared by carbonate co-precipitation method with different pH values. X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscope (TEM), and electrochemical impedance spectroscopies (EIS) were used to investigate the structures and morphologies of the materials and to understand the improvements of their electrochemical performances. With the pH values increased from 7.5 to 8.5, the Li/Ni ratios in the compositions decreased from 5.17 to 4.64, and the initial Coulombic efficiency, cycling stability and average discharge voltages were gained impressively. Especially, the material synthesized at pH = 8.5 delivered a reversible discharge capacity of 263 mAhg(-1) during the first cycle, with 79.0% initial Coulombic efficiency, at the rate of 0.1 C and a superior capacity retention of 94% after 100 cycles at the rate of 1 C. Furthermore, this material exhibited an initial average discharge voltage of 3.65 V, with a voltage decay of only 0.09 V after 50 charge-discharge cycles. The improved electrochemical performances by varying the pH values in the synthesis process can be explained by the mitigation of layered-to-spinel phase transformation and the reduction of solid-electrolyte interface (SEI) resistance. We hope this work can shed some light on the alleviation of voltage and capacity decay issues of the LLOs cathode materials.
引用
收藏
页码:151 / 159
页数:9
相关论文
共 50 条
  • [1] Mitigation of voltage decay in Li-rich layered oxides as cathode materials for lithium-ion batteries
    Wenhui Hu
    Youxiang Zhang
    Ling Zan
    Hengjiang Cong
    Nano Research, 2020, 13 : 151 - 159
  • [2] Voltage fading mechanism of Li-rich layered oxide cathode materials for lithium-ion batteries
    Choi, Aram
    Lim, Hyung-Woo
    Lee, Kyu Tae
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2015, 250
  • [3] A facile cathode design combining Ni-rich layered oxides with Li-rich layered oxides for lithium-ion batteries
    Song, Bohang
    Li, Wangda
    Yan, Pengfei
    Oh, Seung-Min
    Wang, Chong-Min
    Manthiram, Arumugam
    JOURNAL OF POWER SOURCES, 2016, 325 : 620 - 629
  • [4] Surface Modification and Electrochemical Properties of Li-Rich Layered Cathode Materials for Lithium-Ion Batteries
    Yang Jin-Ge
    Li Yu-Jie
    Liu Yong
    Chen Yu-Fang
    Lu Di
    Sun Wei-Wei
    Zheng Chun-Man
    CHINESE JOURNAL OF INORGANIC CHEMISTRY, 2022, 38 (07) : 1252 - 1260
  • [5] Tailoring of Gradient Particles of Li-Rich Layered Cathodes with Mitigated Voltage Decay for Lithium-Ion Batteries
    Ju, Xiaokang
    Hou, Xu
    Beuse, Thomas
    Liu, Zhongqing
    Du, Leilei
    Brinkmann, Jan-Paul
    Paillard, Elie
    Wang, Taihong
    Winter, Martin
    Li, Jie
    ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (39) : 43596 - 43604
  • [6] Recent progress in Li-rich layered oxides as cathode materials for Li-ion batteries
    Yan, Jianhua
    Liu, Xingbo
    Li, Bingyun
    RSC ADVANCES, 2014, 4 (108) : 63268 - 63284
  • [7] Capacity-controllable Li-rich cathode materials for lithium-ion batteries
    Ye, Delai
    Ozawa, Kiyoshi
    Wang, Bei
    Hulicova-Jurcakova, Denisa
    Zou, Jin
    Sun, Chenghua
    Wang, Lianzhou
    NANO ENERGY, 2014, 6 : 92 - 102
  • [8] Insights into the stable layered structure of a Li-rich cathode material for lithium-ion batteries
    An, Juan
    Shi, Liyi
    Chen, Guorong
    Li, Musen
    Liu, Hongjiang
    Yuan, Shuai
    Chen, Shimou
    Zhang, Dengsong
    JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (37) : 19738 - 19744
  • [9] Investigation on capacity decay of Li-rich LNMCO cathode material for lithium-ion batteries
    Guo, Fuling
    Chen, Wangchao
    Yang, Zhichao
    Shi, Chengwu
    Zhou, Zhuohang
    SYNTHETIC METALS, 2019, 258
  • [10] A new Li-rich layered cathode with low lattice strain for lithium-ion batteries
    Ke, Bingyu
    Chu, Shiyong
    Li, Jing-Chang
    Xu, Xiangqun
    Yao, Huan
    Guo, Shaohua
    Zhou, Haoshen
    CHEMICAL COMMUNICATIONS, 2022, 58 (75) : 10488 - 10491