Mitigation of voltage decay in Li-rich layered oxides as cathode materials for lithium-ion batteries

被引:18
|
作者
Hu, Wenhui [1 ]
Zhang, Youxiang [1 ,2 ]
Zan, Ling [1 ]
Cong, Hengjiang [1 ]
机构
[1] Wuhan Univ, Coll Chem & Mol Sci, Wuhan 430072, Peoples R China
[2] Wuhan Univ, Shenzhen Res Inst, Shenzhen 518000, Peoples R China
基金
中国国家自然科学基金;
关键词
lithium ion batteries; cathode; lithium-rich layered oxides; voltage decay; Li-1; 17Mn(0); 50Ni(0); 24Co(0); 09O(2); HIGH-CAPACITY; HIGH-ENERGY; COMPOSITE CATHODE; ANIONIC REDOX; ELECTRODES; ORIGIN; FADE; MN; NI; TRANSFORMATION;
D O I
10.1007/s12274-019-2588-0
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Lithium-rich layered oxides (LLOs) have been extensively studied as cathode materials for lithium-ion batteries (LIBs) by researchers all over the world in the past decades due to their high specific capacities and high charge-discharge voltages. However, as cathode materials LLOs have disadvantages of significant voltage and capacity decays during the charge-discharge cycling. It was shown in the past that fine-tuning of structures and compositions was critical to the performances of this kind of materials. In this report, LLOs with target composition of Li1.17Mn0.50Ni0.24Co0.09O2 were prepared by carbonate co-precipitation method with different pH values. X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscope (TEM), and electrochemical impedance spectroscopies (EIS) were used to investigate the structures and morphologies of the materials and to understand the improvements of their electrochemical performances. With the pH values increased from 7.5 to 8.5, the Li/Ni ratios in the compositions decreased from 5.17 to 4.64, and the initial Coulombic efficiency, cycling stability and average discharge voltages were gained impressively. Especially, the material synthesized at pH = 8.5 delivered a reversible discharge capacity of 263 mAhg(-1) during the first cycle, with 79.0% initial Coulombic efficiency, at the rate of 0.1 C and a superior capacity retention of 94% after 100 cycles at the rate of 1 C. Furthermore, this material exhibited an initial average discharge voltage of 3.65 V, with a voltage decay of only 0.09 V after 50 charge-discharge cycles. The improved electrochemical performances by varying the pH values in the synthesis process can be explained by the mitigation of layered-to-spinel phase transformation and the reduction of solid-electrolyte interface (SEI) resistance. We hope this work can shed some light on the alleviation of voltage and capacity decay issues of the LLOs cathode materials.
引用
收藏
页码:151 / 159
页数:9
相关论文
共 50 条
  • [41] Synthesis of Three-Dimensional Nanoporous Li-Rich Layered Cathode Oxides for High Volumetric and Power Energy Density Lithium-Ion Batteries
    Qiu, Bao
    Yin, Chong
    Xia, Yonggao
    Liu, Zhaoping
    ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (04) : 3661 - 3666
  • [42] Integrated Ni and Li-Rich Layered Oxide Cathode Materials for High Voltage Cycling in Rechargeable Li-Ion Batteries
    Jayamkondan, Yuvashri
    Adelhelm, Philipp
    Nayak, Prasant Kumar
    CHEMELECTROCHEM, 2022, 9 (21)
  • [43] Nonstoichiometry of Li-rich cathode material with improved cycling ability for lithium-ion batteries
    Tai, Zige
    Li, Xinglong
    Zhu, Wei
    Shi, Ming
    Xin, Yanfei
    Guo, Shengwu
    Wu, Yifang
    Chen, Yuanzhen
    Liu, Yongning
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2020, 570 : 264 - 272
  • [44] Suppression of Voltage Decay and Improvement in Electrochemical Performance by Zirconium Doping in Li-Rich Cathode Materials for Li-Ion Batteries
    Dahiya, P. P.
    Ghanty, C.
    Sahoo, K.
    Basu, S.
    Majumder, S. B.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2018, 165 (13) : A3114 - A3124
  • [45] Gradient "Single-Crystal" Li-Rich Cathode Materials for High-Stable Lithium-Ion Batteries
    Wu, Tianhao
    Zhang, Xu
    Wang, Yinzhong
    Zhang, Nian
    Li, Haifeng
    Guan, Yong
    Xiao, Dongdong
    Liu, Shiqi
    Yu, Haijun
    ADVANCED FUNCTIONAL MATERIALS, 2023, 33 (04)
  • [46] Bismuth-doped Li-rich metal oxides as cathode materials for Li-ion batteries
    Cao, C. W.
    Leung, K. L.
    Chung, C. Y.
    Xi, L. J.
    BIOTECHNOLOGY, AGRICULTURE, ENVIRONMENT AND ENERGY, 2015, : 393 - 396
  • [47] Research Progress on Doping Modification of Li-rich Manganese-based Cathode Materials for Lithium-ion Batteries
    Zhai X.
    Zhang P.
    Zhou J.
    He Y.
    Huang H.
    Guo Z.
    Cailiao Daobao/Materials Reports, 2021, 35 (07): : 7056 - 7062
  • [48] Surface Reconstruction in Li-Rich Layered Oxides of Li-Ion Batteries
    Jarvis, Karalee
    Wang, Chih-Chieh
    Varela, Maria
    Unocic, Raymond R.
    Manthiram, Arumugam
    Ferreira, Paulo J.
    CHEMISTRY OF MATERIALS, 2017, 29 (18) : 7668 - 7674
  • [49] Is Cobalt in Li-Rich Layered Oxides for Li-Ion Batteries Necessary?
    Choi, Hyeongseon
    Schuer, Annika Regitta
    Moon, Hyein
    Melinte, Georgian
    Kim, Guk-Tae
    Asenbauer, Jakob
    Kazzazi, Arefeh
    Kuenzel, Matthias
    Passerini, Stefano
    CHEMELECTROCHEM, 2024, 11 (17):
  • [50] Research progress and prospect in element doping of lithium-rich layered oxides as cathode materials for lithium-ion batteries
    Dou Shumei
    Tan Dan
    Li Ping
    Li Huiqin
    Wei Fenyan
    Zhang, Hongge
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2023, 27 (01) : 1 - 23