On universal Lie nilpotent associative algebras

被引:19
|
作者
Etingof, Pavel [1 ]
Kim, John
Ma, Xiaoguang [1 ]
机构
[1] MIT, Dept Math, Cambridge, MA 02139 USA
关键词
Lie nilpotent algebra; Lower central series;
D O I
10.1016/j.jalgebra.2008.09.042
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We Study the quotient Q(i)(A) of a free algebra A by the ideal M-i(A) generated by the ith commutator of any elements. In particular, we completely describe such quotient for i = 4 (for i <= 3 this was done previously by Feigin and Shoikhet). We also Study properties of the ideals M-i(A), e.g. when M-i(A)M-j(A) is contained in Mi+j-1 (A) (by a result Of Gupta and Levin, it is always contained ill Mi+j-2(A)). (C) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:697 / 703
页数:7
相关论文
共 50 条
  • [21] NILPOTENT LIE-ALGEBRAS
    CHAO, CY
    STITZINGER, EL
    ARCHIV DER MATHEMATIK, 1976, 27 (03) : 249 - 252
  • [22] Degenerations of nilpotent Lie algebras
    Burde, D
    JOURNAL OF LIE THEORY, 1999, 9 (01) : 193 - 202
  • [23] Gradings for Nilpotent Lie Algebras
    Hakavuori, Eero
    Kivioja, Ville
    Moisala, Terhi
    Tripaldi, Francesca
    JOURNAL OF LIE THEORY, 2022, 32 (02) : 383 - 412
  • [24] The center of the universal enveloping algebras of small-dimensional nilpotent Lie algebras in prime characteristic
    Vanderlei Lopes de Jesus
    Csaba Schneider
    Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry, 2023, 64 : 243 - 266
  • [25] The center of the universal enveloping algebras of small-dimensional nilpotent Lie algebras in prime characteristic
    de Jesus, Vanderlei Lopes
    Schneider, Csaba
    BEITRAGE ZUR ALGEBRA UND GEOMETRIE-CONTRIBUTIONS TO ALGEBRA AND GEOMETRY, 2023, 64 (02): : 243 - 266
  • [26] CHARACTERISTICALLY NILPOTENT LIE ALGEBRAS
    LEGER, G
    TOGO, S
    DUKE MATHEMATICAL JOURNAL, 1959, 26 (04) : 623 - 628
  • [27] NILPOTENT LIE AND LEIBNIZ ALGEBRAS
    Ray, Chelsie Batten
    Combs, Alexander
    Gin, Nicole
    Hedges, Allison
    Hird, J. T.
    Zack, Laurie
    COMMUNICATIONS IN ALGEBRA, 2014, 42 (06) : 2404 - 2410
  • [28] CONTACT NILPOTENT LIE ALGEBRAS
    Alvarez, M. A.
    Rodriguez-Vallarte, M. C.
    Salgado, G.
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 145 (04) : 1467 - 1474
  • [29] A class of nilpotent Lie algebras
    Cabezas, JM
    Camacho, LM
    Gómez, JR
    Navarro, RM
    COMMUNICATIONS IN ALGEBRA, 2000, 28 (09) : 4489 - 4499
  • [30] Frattinian nilpotent Lie algebras
    Kianmehr, Mehri
    Saeedi, Farshid
    COMMUNICATIONS IN ALGEBRA, 2024, 52 (03) : 1290 - 1296