Sentence Compression for Aspect-Based Sentiment Analysis

被引:83
|
作者
Che, Wanxiang [1 ]
Zhao, Yanyan [2 ]
Guo, Honglei [3 ]
Su, Zhong [3 ]
Liu, Ting [1 ]
机构
[1] Harbin Inst Technol, Dept Comp Sci & Technol, Harbin 150001, Peoples R China
[2] Harbin Inst Technol, Media Technol & Art, Harbin 150001, Peoples R China
[3] IBM Res China, Beijing 100094, Peoples R China
基金
中国国家自然科学基金;
关键词
Aspect-based sentiment analysis; potential semantic features; sentence compression; sentiment analysis;
D O I
10.1109/TASLP.2015.2443982
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Sentiment analysis, which addresses the computational treatment of opinion, sentiment, and subjectivity in text, has received considerable attention in recent years. In contrast to the traditional coarse-grained sentiment analysis tasks, such as document-level sentiment classification, we are interested in the fine-grained aspect-based sentiment analysis that aims to identify aspects that users comment on and these aspects' polarities. Aspect- based sentiment analysis relies heavily on syntactic features. However, the reviews that this task focuses on are natural and spontaneous, thus posing a challenge to syntactic parsers. In this paper, we address this problem by proposing a framework of adding a sentiment sentence compression (Sent_Comp) step before performing the aspect-based sentiment analysis. Different from the previous sentence compression model for common news sentences, Sent_Comp seeks to remove the sentiment-unnecessary information for sentiment analysis, thereby compressing a complicated sentiment sentence into one that is shorter and easier to parse. We apply a discriminative conditional random field model, with certain special features, to automatically compress sentiment sentences. Using the Chinese corpora of four product domains, Sent_Comp significantly improves the performance of the aspect-based sentiment analysis. The features proposed for Sent_Comp, especially the potential semantic features, are useful for sentiment sentence compression.
引用
收藏
页码:2111 / 2124
页数:14
相关论文
共 50 条
  • [41] Improving aspect-based sentiment analysis via aligning aspect embedding
    Tan, Xingwei
    Cai, Yi
    Xu, Jingyun
    Leung, Ho-Fung
    Chen, Wenhao
    Li, Qing
    NEUROCOMPUTING, 2020, 383 : 336 - 347
  • [42] Exploring Scope Detection for Aspect-Based Sentiment Analysis
    Jiang, Xiaotong
    You, Peiwen
    Chen, Chen
    Wang, Zhongqing
    Zhou, Guodong
    IEEE-ACM TRANSACTIONS ON AUDIO SPEECH AND LANGUAGE PROCESSING, 2024, 32 : 83 - 94
  • [43] TASS 2014 - The Challenge of Aspect-based Sentiment Analysis
    Villena Roman, Julio
    Garcia Morera, Janine
    Martinez Camara, Eugenio
    Jimenez Zafra, Salud M.
    PROCESAMIENTO DEL LENGUAJE NATURAL, 2015, (54): : 61 - 68
  • [44] Aspect-based Sentiment Analysis with Opinion Tree Generation
    Bao, Xiaoyi
    Wang Zhongqing
    Jiang, Xiaotong
    Xiao, Rong
    Li, Shoushan
    PROCEEDINGS OF THE THIRTY-FIRST INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, IJCAI 2022, 2022, : 4044 - 4050
  • [45] Deep learning for aspect-based sentiment analysis: a review
    Zhu L.
    Xu M.
    Bao Y.
    Xu Y.
    Kong X.
    PeerJ Computer Science, 2022, 8
  • [46] Adversarial Training for Aspect-Based Sentiment Analysis with BERT
    Karimi, Akbar
    Rossi, Leonardo
    Prati, Andrea
    2020 25TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2021, : 8797 - 8803
  • [47] Domain Adversarial Training for Aspect-Based Sentiment Analysis
    Knoester, Joris
    Frasincar, Flavius
    Trusca, Maria Mihaela
    WEB INFORMATION SYSTEMS ENGINEERING - WISE 2022, 2022, 13724 : 21 - 37
  • [48] Ensemble Deep Learning for Aspect-based Sentiment Analysis
    Mohammadi, Azadeh
    Shaverizade, Anis
    INTERNATIONAL JOURNAL OF NONLINEAR ANALYSIS AND APPLICATIONS, 2021, 12 : 29 - 38
  • [49] Enhancing Aspect-Based Sentiment Analysis With Capsule Network
    Su, Jindian
    Yu, Shanshan
    Luo, Da
    IEEE ACCESS, 2020, 8 : 100551 - 100561
  • [50] Aspect-based Sentiment Analysis for Indonesian Restaurant Reviews
    Ekawati, Devina
    Khodra, Masayu Leylia
    2017 4TH INTERNATIONAL CONFERENCE ON ADVANCED INFORMATICS, CONCEPTS, THEORY, AND APPLICATIONS (ICAICTA) PROCEEDINGS, 2017,