Sentence Compression for Aspect-Based Sentiment Analysis

被引:83
|
作者
Che, Wanxiang [1 ]
Zhao, Yanyan [2 ]
Guo, Honglei [3 ]
Su, Zhong [3 ]
Liu, Ting [1 ]
机构
[1] Harbin Inst Technol, Dept Comp Sci & Technol, Harbin 150001, Peoples R China
[2] Harbin Inst Technol, Media Technol & Art, Harbin 150001, Peoples R China
[3] IBM Res China, Beijing 100094, Peoples R China
基金
中国国家自然科学基金;
关键词
Aspect-based sentiment analysis; potential semantic features; sentence compression; sentiment analysis;
D O I
10.1109/TASLP.2015.2443982
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Sentiment analysis, which addresses the computational treatment of opinion, sentiment, and subjectivity in text, has received considerable attention in recent years. In contrast to the traditional coarse-grained sentiment analysis tasks, such as document-level sentiment classification, we are interested in the fine-grained aspect-based sentiment analysis that aims to identify aspects that users comment on and these aspects' polarities. Aspect- based sentiment analysis relies heavily on syntactic features. However, the reviews that this task focuses on are natural and spontaneous, thus posing a challenge to syntactic parsers. In this paper, we address this problem by proposing a framework of adding a sentiment sentence compression (Sent_Comp) step before performing the aspect-based sentiment analysis. Different from the previous sentence compression model for common news sentences, Sent_Comp seeks to remove the sentiment-unnecessary information for sentiment analysis, thereby compressing a complicated sentiment sentence into one that is shorter and easier to parse. We apply a discriminative conditional random field model, with certain special features, to automatically compress sentiment sentences. Using the Chinese corpora of four product domains, Sent_Comp significantly improves the performance of the aspect-based sentiment analysis. The features proposed for Sent_Comp, especially the potential semantic features, are useful for sentiment sentence compression.
引用
收藏
页码:2111 / 2124
页数:14
相关论文
共 50 条
  • [21] Gated recurrent unit with multilingual universal sentence encoder for Arabic aspect-based sentiment analysis
    AL-Smadi, Mohammad
    Hammad, Mahmoud M.
    Al-Zboon, Sa'ad A.
    AL-Tawalbeh, Saja
    Cambria, Erik
    KNOWLEDGE-BASED SYSTEMS, 2023, 261
  • [22] Data augmentation for aspect-based sentiment analysis
    Li, Guangmin
    Wang, Hui
    Ding, Yi
    Zhou, Kangan
    Yan, Xiaowei
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2023, 14 (01) : 125 - 133
  • [23] A comprehensive survey on aspect-based sentiment analysis
    Yadav, Kaustubh
    Kumar, Neeraj
    Maddikunta, Praveen Kumar Reddy
    Gadekallu, Thippa Reddy
    INTERNATIONAL JOURNAL OF ENGINEERING SYSTEMS MODELLING AND SIMULATION, 2021, 12 (04) : 279 - 290
  • [24] Aspect-based sentiment analysis with metaphorical information
    Tian H.
    Yu L.
    Tian S.
    Long J.
    Zhou T.
    Wang B.
    Li Y.
    Journal of Intelligent and Fuzzy Systems, 2024, 46 (04): : 8065 - 8074
  • [25] Aspect-Based Sentiment Analysis for Service Industry
    Maroof, Afsheen
    Wasi, Shaukat
    Jami, Syed Imran
    Siddiqui, Muhammad Shoaib
    IEEE ACCESS, 2024, 12 : 109702 - 109713
  • [26] Attention-based Sentiment Reasoner for aspect-based sentiment analysis
    Liu, Ning
    Shen, Bo
    Zhang, Zhenjiang
    Zhang, Zhiyuan
    Mi, Kun
    HUMAN-CENTRIC COMPUTING AND INFORMATION SCIENCES, 2019, 9 (01)
  • [27] Hybrid sentiment classification on twitter aspect-based sentiment analysis
    Zainuddin, Nurulhuda
    Selamat, Ali
    Ibrahim, Roliana
    APPLIED INTELLIGENCE, 2018, 48 (05) : 1218 - 1232
  • [28] Hybrid sentiment classification on twitter aspect-based sentiment analysis
    Nurulhuda Zainuddin
    Ali Selamat
    Roliana Ibrahim
    Applied Intelligence, 2018, 48 : 1218 - 1232
  • [29] Complementary Learning of Aspect Terms for Aspect-based Sentiment Analysis
    Qin, Han
    Tian, Yuanhe
    Xia, Fei
    Song, Yan
    LREC 2022: THIRTEEN INTERNATIONAL CONFERENCE ON LANGUAGE RESOURCES AND EVALUATION, 2022, : 7029 - 7039
  • [30] Aspect Is Not You Need: No-aspect Differential Sentiment Framework for Aspect-based Sentiment Analysis
    Cao, Jiahao
    Liu, Rui
    Peng, Huailiang
    Jiang, Lei
    Bai, Xu
    NAACL 2022: THE 2022 CONFERENCE OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: HUMAN LANGUAGE TECHNOLOGIES, 2022, : 1599 - 1609