Underwater Terrain Positioning Method Using Maximum a Posteriori Estimation and PCNN Model

被引:9
|
作者
Chen, Pengyun [1 ]
Zhang, Pengfei [1 ]
Ma, Teng [2 ]
Shen, Peng [3 ]
Li, Ye [2 ]
Wang, Rupeng [2 ]
Han, Yue [4 ]
Li, Lizhou [1 ]
机构
[1] North Univ China, Coll Mechatron Engn, Taiyuan 030051, Shanxi, Peoples R China
[2] Harbin Engn Univ, Sci & Technol Underwater Vehicle Lab, Harbin 150001, Heilongjiang, Peoples R China
[3] Natl Deep Sea Ctr, Qingdao 266237, Shandong, Peoples R China
[4] Taiyuan Tourism Coll, Modern Educ Informat Ctr, Taiyuan 030032, Shanxi, Peoples R China
来源
JOURNAL OF NAVIGATION | 2019年 / 72卷 / 05期
基金
中国国家自然科学基金;
关键词
Autonomous Underwater Vehicle; Terrain Matching Positioning; Maximum a Posteriori estimation; Pulse Coupled Neural Network; BASE-LINE; NAVIGATION; VEHICLES;
D O I
10.1017/S0373463319000067
中图分类号
U6 [水路运输]; P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
Conventional underwater navigation and positioning methods for Autonomous Underwater Vehicles (AUVs) either require the installation of acoustic arrays, which make AUVs less independent, or result in cumulative errors. This paper proposes an Underwater Terrain Positioning Method (UTPM) using Maximum a Posteriori (MAP) estimation and a Pulse Coupled Neural Network (PCNN) model for highly accurate navigation by AUVs. The PCNN model is used as a secondary discriminant to effectively identify pseudo-anchor points in flat terrain feature areas and to find the true positioning point, which significantly improves the matching positioning accuracy in these areas. Simulation results show that the proposed method effectively corrects Inertial Navigation System (INS) cumulative errors and has high matching positioning accuracy, which satisfy the requirements of AUV underwater navigation and positioning.
引用
收藏
页码:1233 / 1253
页数:21
相关论文
共 50 条
  • [41] CONSTRUCTION METHOD OF THE TOPOGRAPHICAL FEATURES MODEL FOR UNDERWATER TERRAIN NAVIGATION
    Wang, Lihui
    Yu, Le
    Zhu, Yanhua
    POLISH MARITIME RESEARCH, 2015, 22 : 121 - 125
  • [42] Evaluation of Terrain Parameter Estimation using a Stochastic Terrain Model
    Dumond, Danielle A.
    Ray, Laura E.
    Trautmann, Eric
    UNMANNED SYSTEMS TECHNOLOGY XI, 2009, 7332
  • [43] The maximum a posteriori estimation model for signal recovery with mixed Gaussian and impulse noise
    Zeng, Xueying
    Lv, Ruoxi
    Li, Si
    APPLIED MATHEMATICS LETTERS, 2024, 147
  • [44] A Maximum A-Posteriori Based Algorithm for Dynamic Load Model Parameter Estimation
    Guo, Siming
    Overbye, Thomas J.
    2015 IEEE INTERNATIONAL CONFERENCE ON SMART GRID COMMUNICATIONS (SMARTGRIDCOMM), 2015, : 428 - 433
  • [45] Marginal Maximum A Posteriori Item Parameter Estimation for the Generalized Graded Unfolding Model
    Roberts, James S.
    Thompson, Vanessa M.
    APPLIED PSYCHOLOGICAL MEASUREMENT, 2011, 35 (04) : 259 - 279
  • [46] A parameter estimation method of the simple PCNN model for infrared human segmentation
    He, Fuliang
    Guo, Yongcai
    Gao, Chao
    OPTICS AND LASER TECHNOLOGY, 2019, 110 : 114 - 119
  • [47] Time delay estimation using wavelet denoising maximum likelihood method for underwater reverberant environment
    Rajan, Marxim Rahula Bharathi Boopathi
    Mohanty, Amiya Ranjan
    IET RADAR SONAR AND NAVIGATION, 2020, 14 (08): : 1183 - 1191
  • [48] Bayesian maximum a posteriori-estimation of κ turbulence model parameters using algorithmic differentiation in SOLPS-ITER
    Carli, Stefano
    Dekeyser, Wouter
    Blommaert, Maarten
    Coosemans, Reinart
    Van Uytven, Wim
    Baelmans, Martine
    CONTRIBUTIONS TO PLASMA PHYSICS, 2022, 62 (5-6)
  • [49] Maximum a posteriori probability estimation for localizing damage using ultrasonic guided waves
    Flynn, Eric B.
    Todd, Michael D.
    Wilcox, Paul D.
    Drinkwater, Bruce W.
    Croxford, Anthony J.
    HEALTH MONITORING OF STRUCTURAL AND BIOLOGICAL SYSTEMS 2011, 2011, 7984
  • [50] Optimal Sampling Strategy Development Methodology Using Maximum A Posteriori Bayesian Estimation
    van der Meer, A. Franciscus
    Marcus, Marco A. E.
    Touw, Daniel J.
    Proost, Johannes H.
    Neef, Cees
    THERAPEUTIC DRUG MONITORING, 2011, 33 (02) : 133 - 146