Underwater Terrain Positioning Method Using Maximum a Posteriori Estimation and PCNN Model

被引:9
|
作者
Chen, Pengyun [1 ]
Zhang, Pengfei [1 ]
Ma, Teng [2 ]
Shen, Peng [3 ]
Li, Ye [2 ]
Wang, Rupeng [2 ]
Han, Yue [4 ]
Li, Lizhou [1 ]
机构
[1] North Univ China, Coll Mechatron Engn, Taiyuan 030051, Shanxi, Peoples R China
[2] Harbin Engn Univ, Sci & Technol Underwater Vehicle Lab, Harbin 150001, Heilongjiang, Peoples R China
[3] Natl Deep Sea Ctr, Qingdao 266237, Shandong, Peoples R China
[4] Taiyuan Tourism Coll, Modern Educ Informat Ctr, Taiyuan 030032, Shanxi, Peoples R China
来源
JOURNAL OF NAVIGATION | 2019年 / 72卷 / 05期
基金
中国国家自然科学基金;
关键词
Autonomous Underwater Vehicle; Terrain Matching Positioning; Maximum a Posteriori estimation; Pulse Coupled Neural Network; BASE-LINE; NAVIGATION; VEHICLES;
D O I
10.1017/S0373463319000067
中图分类号
U6 [水路运输]; P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
Conventional underwater navigation and positioning methods for Autonomous Underwater Vehicles (AUVs) either require the installation of acoustic arrays, which make AUVs less independent, or result in cumulative errors. This paper proposes an Underwater Terrain Positioning Method (UTPM) using Maximum a Posteriori (MAP) estimation and a Pulse Coupled Neural Network (PCNN) model for highly accurate navigation by AUVs. The PCNN model is used as a secondary discriminant to effectively identify pseudo-anchor points in flat terrain feature areas and to find the true positioning point, which significantly improves the matching positioning accuracy in these areas. Simulation results show that the proposed method effectively corrects Inertial Navigation System (INS) cumulative errors and has high matching positioning accuracy, which satisfy the requirements of AUV underwater navigation and positioning.
引用
收藏
页码:1233 / 1253
页数:21
相关论文
共 50 条
  • [31] Improving maximum likelihood estimation using prior probabilities: A tutorial on maximum a posteriori estimation and an examination of the weibull distribution
    Cousineau, Denis
    Helie, Sebastien
    TUTORIALS IN QUANTITATIVE METHODS FOR PSYCHOLOGY, 2013, 9 (02): : 61 - 71
  • [32] Marginal maximum a posteriori estimation using Markov chain Monte Carlo
    Arnaud Doucet
    Simon J. Godsill
    Christian P. Robert
    Statistics and Computing, 2002, 12 : 77 - 84
  • [33] Marginal maximum a posteriori estimation using Markov chain Monte Carlo
    Doucet, A
    Godsill, SJ
    Robert, CP
    STATISTICS AND COMPUTING, 2002, 12 (01) : 77 - 84
  • [34] Resolution enhancement for fiber bundle imaging using maximum a posteriori estimation
    Shao, Jianbo
    Liao, Wei-Chen
    Liang, Rongguang
    Barnard, Kobus
    OPTICS LETTERS, 2018, 43 (08) : 1906 - 1909
  • [35] Anatomical Labeling of the Circle of Willis Using Maximum A Posteriori Probability Estimation
    Bogunovic, Hrvoje
    Maria Pozo, Jose
    Cardenes, Ruben
    San Roman, Luis
    Frangi, Alejandro F.
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2013, 32 (09) : 1587 - 1599
  • [36] Maximum a Posteriori Sequence Estimation Using Monte Carlo Particle Filters
    Simon Godsill
    Arnaud Doucet
    Mike West
    Annals of the Institute of Statistical Mathematics, 2001, 53 : 82 - 96
  • [37] Maximum a posteriori estimation in graphical models using local linear approximation
    Sagar, Ksheera
    Datta, Jyotishka
    Banerjee, Sayantan
    Bhadra, Anindya
    STAT, 2024, 13 (02):
  • [38] Maximum a posteriori sequence estimation using Monte Carlo particle filters
    Godsill, S
    Doucet, A
    West, M
    ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2001, 53 (01) : 82 - 96
  • [39] Blind deconvolution of images with model discrepancies using maximum a posteriori estimation with heavy-tailed priors
    Kotera, Jan
    Sroubek, Filip
    DIGITAL PHOTOGRAPHY XI, 2015, 9404
  • [40] The Helmert Method for Improving the Adjustment Model of Underwater Terrain Surveys
    Li Mingsan
    Sun Lan
    Liu Yanchun
    Bao Jingyang
    Hu Jia
    2009 INTERNATIONAL CONFERENCE ON ENVIRONMENTAL SCIENCE AND INFORMATION APPLICATION TECHNOLOGY, VOL II, PROCEEDINGS, 2009, : 201 - 204