INFINITELY MANY SOLUTIONS FOR PROBLEMS IN FRACTIONAL ORLICZ-SOBOLEV SPACES

被引:3
|
作者
Bahrouni, Sabri [1 ]
机构
[1] Univ Monastir, Fac Sci, Math Dept, Monastir, Tunisia
关键词
general fractional Orlicz-Sobolev space; fractional g-laplacian; infinitely many solutions; compact embedding theorem; Kirchhoff equation; KIRCHHOFF TYPE PROBLEM; POSITIVE SOLUTIONS; ELLIPTIC EQUATION; EXISTENCE;
D O I
10.1216/rmj.2020.50.1151
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We use a symmetric mountain pass lemma of Kajikiya to prove the existence of infinitely many weak solutions for the Schrodinger Phi-Laplace equation (-Delta)(Phi)u + V(x)phi(u)= xi(x)f(u) in R-d, where Phi(t) = integral(t)(0) phi(s) ds is an N-function, Delta(Phi) is the Phi-Laplacian operator, V : R-d -> R is a continuous function, xi is a function with sign -changing on Rd and the nonlinearity f is sublinear as vertical bar u vertical bar -> infinity. During the study of our problem, we deal with a new compact embedding theorem for the Orlicz Sobolev spaces. We also study the existence and multiplicity of solutions to the general fractional Phi-Laplacian equations of Kirchhoff type {M(integral(2d Phi()(R)u(x) - u(y)/K(vertical bar x - y vertical bar)) dxdy/N(vertical bar x - y vertical bar))(-Delta)(Phi)(K, N)u = f(x, u) in Omega, in R-d \ Omega. where Omega is an open bounded subset of R-d with smooth boundary partial derivative Omega, d > 2, and M : R-0(+)-> R+ is a continuous function and f : Omega x R -> R is a Caratheodory function. The proofs rely essentially on the fountain theorem and the genus theory.
引用
收藏
页码:1151 / 1173
页数:23
相关论文
共 50 条
  • [31] Existence of solutions for a class of Kirchhoff type problems in Orlicz-Sobolev spaces
    Nguyen Thanh Chung
    ANNALES POLONICI MATHEMATICI, 2015, 113 (03) : 283 - 294
  • [32] Existence and multiplicity of solutions for a class of quasilinear problems in Orlicz-Sobolev spaces
    Ait-Mahiout, Karima
    Alves, Claudianor O.
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2017, 62 (06) : 767 - 785
  • [33] Hardy and Poincare inequalities in fractional Orlicz-Sobolev spaces
    Bal, Kaushik
    Mohanta, Kaushik
    Roy, Prosenjit
    Sk, Firoj
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2022, 216
  • [34] Multiple solutions in fractional Orlicz-Sobolev Spaces for a class of nonlocal Kirchhoff systems
    El-houari, Hamza
    Chadli, Lalla Saadia
    Moussa, Hicham
    FILOMAT, 2024, 38 (08) : 2857 - 2875
  • [35] A class of elliptic inclusion in fractional Orlicz-Sobolev spaces
    El-houari, Hamza
    Moussa, Hicham
    Chadli, Lalla Saadia
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2024, 69 (05) : 755 - 772
  • [36] Multiplicity of solutions for nonlocal parametric elliptic systems in fractional Orlicz-Sobolev spaces
    Chadli, Lalla Saadia
    El-Houari, Hamza
    JOURNAL OF ELLIPTIC AND PARABOLIC EQUATIONS, 2023, 9 (02) : 1131 - 1164
  • [37] Multivalued Elliptic Inclusion in Fractional Orlicz-Sobolev Spaces
    El-Houari, H.
    Hajar, S.
    Moussa, H.
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2024, 18 (04)
  • [38] Nonhomogeneous boundary value problems in Orlicz-Sobolev spaces
    Mihailescu, Mihai
    Radulescu, Vicentiu
    COMPTES RENDUS MATHEMATIQUE, 2007, 344 (01) : 15 - 20
  • [39] On the Minimal Solutions of Variational Inequalities in Orlicz-Sobolev Spaces
    Dong, Ge
    CHINESE ANNALS OF MATHEMATICS SERIES B, 2021, 42 (03) : 333 - 356
  • [40] Fractional Orlicz-Sobolev embeddings
    Alberico, Angela
    Cianchi, Andrea
    Pick, Lubos
    Slavikova, Lenka
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2021, 149 : 216 - 253