INFINITELY MANY SOLUTIONS FOR PROBLEMS IN FRACTIONAL ORLICZ-SOBOLEV SPACES

被引:3
|
作者
Bahrouni, Sabri [1 ]
机构
[1] Univ Monastir, Fac Sci, Math Dept, Monastir, Tunisia
关键词
general fractional Orlicz-Sobolev space; fractional g-laplacian; infinitely many solutions; compact embedding theorem; Kirchhoff equation; KIRCHHOFF TYPE PROBLEM; POSITIVE SOLUTIONS; ELLIPTIC EQUATION; EXISTENCE;
D O I
10.1216/rmj.2020.50.1151
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We use a symmetric mountain pass lemma of Kajikiya to prove the existence of infinitely many weak solutions for the Schrodinger Phi-Laplace equation (-Delta)(Phi)u + V(x)phi(u)= xi(x)f(u) in R-d, where Phi(t) = integral(t)(0) phi(s) ds is an N-function, Delta(Phi) is the Phi-Laplacian operator, V : R-d -> R is a continuous function, xi is a function with sign -changing on Rd and the nonlinearity f is sublinear as vertical bar u vertical bar -> infinity. During the study of our problem, we deal with a new compact embedding theorem for the Orlicz Sobolev spaces. We also study the existence and multiplicity of solutions to the general fractional Phi-Laplacian equations of Kirchhoff type {M(integral(2d Phi()(R)u(x) - u(y)/K(vertical bar x - y vertical bar)) dxdy/N(vertical bar x - y vertical bar))(-Delta)(Phi)(K, N)u = f(x, u) in Omega, in R-d \ Omega. where Omega is an open bounded subset of R-d with smooth boundary partial derivative Omega, d > 2, and M : R-0(+)-> R+ is a continuous function and f : Omega x R -> R is a Caratheodory function. The proofs rely essentially on the fountain theorem and the genus theory.
引用
收藏
页码:1151 / 1173
页数:23
相关论文
共 50 条
  • [21] MULTIPLE SOLUTIONS FOR A NONLOCAL KIRCHHOFF PROBLEM IN FRACTIONAL ORLICZ-SOBOLEV SPACES
    Azroul, Elhoussine
    Benkirane, Abdelmoujib
    Srati, Mohammed
    Xiang, Mingqi
    KRAGUJEVAC JOURNAL OF MATHEMATICS, 2025, 49 (02): : 287 - 303
  • [22] Existence and multiplicity of solutions for a Dirichlet problem in fractional Orlicz-Sobolev spaces
    Ochoa, Pablo
    Silva, Analia
    Marziani, Maria Jose Suarez
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2024, 203 (01) : 21 - 47
  • [23] Eigenvalue problems in anisotropic Orlicz-Sobolev spaces
    Mihailescu, Mihai
    Morosanu, Gheorghe
    Radulescu, Vicentiu
    COMPTES RENDUS MATHEMATIQUE, 2009, 347 (9-10) : 521 - 526
  • [24] Nonhomogeneous multiparameter problems in Orlicz-Sobolev spaces
    Radulescu, Vicentiu D.
    dos Santos, Gelson C. G.
    Tavares, Leandro S.
    MATHEMATISCHE NACHRICHTEN, 2023, 296 (06) : 2555 - 2574
  • [25] Nonhomogeneous Neumann problems in Orlicz-Sobolev spaces
    Mihailescu, Mihai
    Radulescu, Vicentiu
    COMPTES RENDUS MATHEMATIQUE, 2008, 346 (7-8) : 401 - 406
  • [26] Multiple solutions for quasilinear elliptic Neumann problems in Orlicz-Sobolev spaces
    Nikolaos Halidias
    Vy K Le
    Boundary Value Problems, 2005
  • [27] Multiple solutions for quasilinear elliptic Neumann problems in Orlicz-Sobolev spaces
    Halidias, Nikolaos
    Le, Vy K.
    BOUNDARY VALUE PROBLEMS, 2005, 2005 (03) : 299 - 306
  • [28] Homogenization of obstacle problems in Orlicz-Sobolev spaces
    Marcon, Diego
    Rodrigues, Jose Francisco
    Teymurazyan, Rafayel
    PORTUGALIAE MATHEMATICA, 2018, 75 (3-4) : 267 - 283
  • [29] HOMOGENEOUS EIGENVALUE PROBLEMS IN ORLICZ-SOBOLEV SPACES
    Bonder, Julian Fernandez
    Salort, Ariel
    Vivas, Hernan
    TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2024, 63 (02) : 429 - 453
  • [30] The limiting Behavior of Solutions to Inhomogeneous Eigenvalue Problems in Orlicz-Sobolev Spaces
    Bocea, Marian
    Mihailescu, Mihai
    Stancu-Dumitru, Denisa
    ADVANCED NONLINEAR STUDIES, 2014, 14 (04) : 977 - 990