Principal eigenvalue problem for infinity Laplacian in metric spaces

被引:2
|
作者
Liu, Qing [1 ]
Mitsuishi, Ayato [2 ]
机构
[1] Okinawa Inst Sci & Technol Grad Univ, Geometr Partial Differential Equat Unit, Onna, Okinawa 9040495, Japan
[2] Fukuoka Univ, Fac Sci, Dept Appl Math, Fukuoka, Japan
关键词
eigenvalue problems; metric spaces; infinity Laplacian; eikonal equation; viscosity solutions; CARNOT-CARATHEODORY DISTANCE; HAMILTON-JACOBI EQUATIONS; TUG-OF-WAR; MAXIMUM PRINCIPLE; VISCOSITY SOLUTIONS; EIKONAL EQUATION; EQUIVALENCE; LIMIT;
D O I
10.1515/ans-2022-0028
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This article is concerned with the Dirichlet eigenvalue problem associated with the infinity-Laplacian in metric spaces. We establish a direct partial differential equation approach to find the principal eigenvalue and eigenfunctions in a proper geodesic space without assuming any measure structure. We provide an appropriate notion of solutions to the infinity-eigenvalue problem and show the existence of solutions by adapting Perron's method. Our method is different from the standard limit process via the variational eigenvalue formulation for p-Laplacian in the Euclidean space.
引用
收藏
页码:548 / 573
页数:26
相关论文
共 50 条