Principal eigenvalue problem for infinity Laplacian in metric spaces

被引:2
|
作者
Liu, Qing [1 ]
Mitsuishi, Ayato [2 ]
机构
[1] Okinawa Inst Sci & Technol Grad Univ, Geometr Partial Differential Equat Unit, Onna, Okinawa 9040495, Japan
[2] Fukuoka Univ, Fac Sci, Dept Appl Math, Fukuoka, Japan
关键词
eigenvalue problems; metric spaces; infinity Laplacian; eikonal equation; viscosity solutions; CARNOT-CARATHEODORY DISTANCE; HAMILTON-JACOBI EQUATIONS; TUG-OF-WAR; MAXIMUM PRINCIPLE; VISCOSITY SOLUTIONS; EIKONAL EQUATION; EQUIVALENCE; LIMIT;
D O I
10.1515/ans-2022-0028
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This article is concerned with the Dirichlet eigenvalue problem associated with the infinity-Laplacian in metric spaces. We establish a direct partial differential equation approach to find the principal eigenvalue and eigenfunctions in a proper geodesic space without assuming any measure structure. We provide an appropriate notion of solutions to the infinity-eigenvalue problem and show the existence of solutions by adapting Perron's method. Our method is different from the standard limit process via the variational eigenvalue formulation for p-Laplacian in the Euclidean space.
引用
收藏
页码:548 / 573
页数:26
相关论文
共 50 条
  • [21] The Neumann eigenvalue problem for the ∞-Laplacian
    Esposito, L.
    Kawohl, B.
    Nitsch, C.
    Trombetti, C.
    RENDICONTI LINCEI-MATEMATICA E APPLICAZIONI, 2015, 26 (02) : 119 - 134
  • [22] THE EIGENVALUE PROBLEM FOR THE LAPLACIAN EQUATIONS
    邵志强
    洪家兴
    ActaMathematicaScientia, 2007, (02) : 329 - 337
  • [23] THE DEPENDENCE OF THE FIRST EIGENVALUE OF THE INFINITY LAPLACIAN WITH RESPECT TO THE DOMAIN
    Navarro, J. C.
    Rossi, J. D.
    Antolin, A. San
    Saintier, N.
    GLASGOW MATHEMATICAL JOURNAL, 2014, 56 (02) : 241 - 249
  • [24] Finite Spaces Pretangent to Metric Spaces at Infinity
    Bilet V.
    Dovgoshey O.
    Journal of Mathematical Sciences, 2019, 242 (3) : 360 - 380
  • [25] Principal eigenvalue of the p-laplacian in RN
    Furusho, Yasuhiro
    Murata, Yuji
    Nonlinear Analysis, Theory, Methods and Applications, 1997, 30 (08): : 4749 - 4756
  • [26] THE PRINCIPAL EIGENVALUE OF THE ∞-LAPLACIAN WITH THE NEUMANN BOUNDARY CONDITION
    Patrizi, Stefania
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2011, 17 (02) : 575 - 601
  • [27] An isoperimetric inequality for the principal eigenvalue of the Laplacian with drift
    Hamel, F
    Nadirashvili, N
    Russ, E
    COMPTES RENDUS MATHEMATIQUE, 2005, 340 (05) : 347 - 352
  • [28] Estimates of the principal eigenvalue of the p-Laplacian
    Benedikt, Jiri
    Drabek, Pavel
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 393 (01) : 311 - 315
  • [29] Principal eigenvalue of the p-Laplacian in RN
    Furusho, Y
    Murata, Y
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1997, 30 (08) : 4749 - 4756
  • [30] Eigenvalue estimates for the weighted Laplacian on metric trees
    Naimark, K
    Solomyak, M
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2000, 80 : 690 - 724