Self-doping effects in epitaxially grown graphene

被引:35
|
作者
Siegel, D. A. [1 ,2 ]
Zhou, S. Y. [1 ,2 ]
El Gabaly, F. [3 ]
Fedorov, A. V. [4 ]
Schmid, A. K. [3 ]
Lanzara, A. [1 ,2 ]
机构
[1] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA
[3] Univ Calif Berkeley, Lawrence Berkeley Lab, Natl Ctr Electron Microscopy, Berkeley, CA 94720 USA
[4] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA
基金
美国国家科学基金会;
关键词
band structure; carbon; doping; electron microscopy; monolayers; nanostructured materials; photoelectron spectra; quasiparticles; surface morphology;
D O I
10.1063/1.3028015
中图分类号
O59 [应用物理学];
学科分类号
摘要
Self-doping in graphene has been studied by examining single-layer epitaxially grown graphene samples with differing characteristic lateral terrace widths. Low energy electron microscopy was used to gain real-space information about the graphene surface morphology, which was compared with data obtained by angle-resolved photoemission spectroscopy to study the effect of the monolayer graphene terrace width on the low energy dispersions. By altering the graphene terrace width, we report significant changes in the electronic structure and quasiparticle relaxation time of the material, in addition to a terrace width-dependent doping effect.
引用
收藏
页数:3
相关论文
共 50 条
  • [31] Self-doping enhancing thermoelectric properties of GeTe thin films
    Sun, Xiaoyu
    Hou, Shuaihang
    Wu, Zuoxu
    Wang, Jian
    Qiao, Youwei
    Tang, Zunqian
    Liu, Xingjun
    Mao, Jun
    Zhang, Qian
    Cao, Feng
    APPLIED PHYSICS LETTERS, 2024, 124 (01)
  • [32] THE INFLUENCE OF DIFFERENT SUBSTITUENT ON POLYMER SELF-DOPING CONDUCTIVE PROPERTY
    WANG, RS
    WANG, LM
    FU, YJ
    SU, ZM
    SYNTHETIC METALS, 1995, 69 (1-3) : 713 - 714
  • [33] Electronic and geometric corrugation of periodically rippled, self-nanostructured graphene epitaxially grown on Ru(0001)
    Borca, Bogdana
    Barja, Sara
    Garnica, Manuela
    Minniti, Marina
    Politano, Antonio
    Rodriguez-Garcia, Josefa M.
    Hinarejos, Juan Jose
    Farias, Daniel
    Vazquez de Parga, Amadeo L.
    Miranda, Rodolfo
    NEW JOURNAL OF PHYSICS, 2010, 12
  • [34] Highly conductive and thermally stable self-doping propylthiosulfonated polyanilines
    Han, CC
    Lu, CH
    Hong, SP
    Yang, KF
    MACROMOLECULES, 2003, 36 (21) : 7908 - 7915
  • [35] Self-Doping of Ultrathin Insulating Films by Transition Metal Atoms
    Li, Z.
    Chen, H. -Y. T.
    Schouteden, K.
    Lauwaet, K.
    Giordano, L.
    Trioni, M. I.
    Janssens, E.
    Iancu, V.
    Van Haesendonck, C.
    Lievens, P.
    Pacchioni, G.
    PHYSICAL REVIEW LETTERS, 2014, 112 (02)
  • [36] The photocatalytic mechanism of BiOI with oxygen vacancy and iodine self-doping
    Kong, Ting
    Wei, Xiumei
    Zhu, Gangqiang
    Huang, Yuhong
    CHINESE JOURNAL OF PHYSICS, 2017, 55 (02) : 331 - 341
  • [37] On the catalytic oxidation of ascorbic acid at self-doping polyaniline films
    Rivero, Omar
    Sanchis, Carlos
    Huerta, Francisco
    Morallon, Emilia
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2012, 14 (29) : 10271 - 10278
  • [38] Self-doping behavior and cation disorder in MgSnN2
    Han, Dan
    Rudel, Stefan S.
    Schnick, Wolfgang
    Ebert, Hubert
    PHYSICAL REVIEW B, 2022, 105 (12)
  • [39] SAMARIUM DOPING OF MOLECULAR-BEAM EPITAXIALLY GROWN INSB ON INP
    PARTIN, DL
    HEREMANS, J
    THRUSH, CM
    MORELLI, DT
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 1992, 10 (02): : 873 - 876
  • [40] Epitaxially Grown Strained Pentacene Thin Film on Graphene Membrane
    Kim, Kwanpyo
    Santos, Elton J. G.
    Lee, Tae Hoon
    Nishi, Yoshio
    Bao, Zhenan
    SMALL, 2015, 11 (17) : 2037 - 2043