Comparison of the Goos-Hanchen Shift Induced by Surface Plasmon Resonance in Metal-MoSe2-Graphene Structure

被引:4
|
作者
Han, Lei [1 ]
Li, Keliang [1 ,2 ]
Wu, Chuan [1 ]
机构
[1] China Univ Geosci Wuhan, Sch Mech Engn & Elect Informat, Wuhan 430074, Peoples R China
[2] Inst Marine Geol Explorat Technol, Guangzhou Marine Geol Survey, Guangzhou 510075, Peoples R China
关键词
Goos-Hanchen shift; Surface plasmon resonance; Metal; MoSe2; Graphene; Sensitivity; BLACK PHOSPHORUS; SPR BIOSENSOR; PERFORMANCE; GIANT;
D O I
10.1007/s11468-020-01246-z
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The surface plasmon resonance (SPR) based on the two-dimensional (2D) materials is proposed to enhance the Goos-Hanchen (GH) shift. In MoSe2-graphene-coated heterostructure with different metals (Ag/Cu/Au), the GH shift is significantly enhanced. In order to realize high GHshift, the number of MoSe(2)and graphene layer are optimized. Through comparative analysis, by using Ag as the metal, the best GH shift up to 434.7 lambda can be achieved with the MoSe(2)and graphene monolayer. TheoptimumGH shifts of Au/Cu-MoSe2-graphene structures are 360.7 lambda and 190.1 lambda, respectively. Therefore,the highest GH shift corresponding to the sensitivity of 6.600 x 10(5)lambda/RIU is obtained by Ag-MoSe2-graphene structures. Moreover,the sensitivity of Au-MoSe2-graphene structures is 5.815 x 10(5)lambda/RIU,which is about 1000 times higher than the Au, Au-graphene, and Au-MoSe(2)structure. The GH shift sensor with 2D-materialsan be extensive used in the fields of biological researches, optical sensing, and measurement.
引用
收藏
页码:2195 / 2203
页数:9
相关论文
共 50 条
  • [31] Observation of Giant Angular Goos-Hanchen Shifts Enhanced by Surface Plasmon Resonance in Subwavelength Grating
    Petrov, Nikolai I. I.
    Sokolov, Yuri M. M.
    Stoiakin, Vladimir V. V.
    Danilov, Viktor A. A.
    Popov, Vladimir V. V.
    Usievich, Boris A. A.
    PHOTONICS, 2023, 10 (02)
  • [32] Measurement of Surface Plasmon Polariton Enhanced Goos-Hanchen Shift Based on Grating and Liquid Crystal Technologies
    Huang, Zhang-di
    Li, Su-shan
    Wu, Zi-jian
    Xu, Fei
    Hu, Wei
    Lu, Yan-qing
    IEEE PHOTONICS TECHNOLOGY LETTERS, 2011, 23 (23) : 1829 - 1831
  • [33] Polarization-independent enhanced and tunable Goos-Hanchen shift in a metal-dielectric grating structure with monolayer graphene
    Zhou, Jun
    Hu, Pengya
    Song, Qi
    Yin, Dekang
    Da, Haixia
    PHYSICA SCRIPTA, 2023, 98 (03)
  • [34] Giant Goos-Hanchen Shift With High Reflectivity via Double Metal-Dielectric-Metal Waveguides Induced Fano Resonance
    Zhang, Kaihong
    Zhang, Yingcong
    Wang, Xianping
    Yin, Cheng
    Li, Jun
    Yuan, Wen
    Luo, Haimei
    Sang, Minghuang
    IEEE PHOTONICS JOURNAL, 2022, 14 (01):
  • [35] ANYL 45-Ultrahigh resolution surface plasmon resonance biosensor based on Goos-Hanchen effect
    Hesselink, Lambertus
    Yin, Xiaobo
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2007, 234
  • [36] Giant Goos-Hanchen shifts of waveguide coupled long-range surface plasmon resonance mode
    You, Qi
    Zhu, Jia-Qi
    Guo, Jun
    Wu, Lei-Ming
    Dai, Xiao-Yu
    Xiang, Yuan-Jiang
    CHINESE PHYSICS B, 2018, 27 (08)
  • [37] Giant and highly reflective Goos-Hanchen shift in a metal-dielectric multilayer Fano structure
    Saito, Hirozumi
    Neo, Yoichiro
    Matsumoto, Takahiro
    Tomita, Makoto
    OPTICS EXPRESS, 2019, 27 (20): : 28629 - 28639
  • [38] Long range surface plasmon resonance enhanced electro-optically tunable Goos-Hanchen shift and Imbert-Fedorov shift in ZnSe prism
    Goswami, Nabamita
    Kar, Aparupa
    Saha, Ardhendu
    OPTICS COMMUNICATIONS, 2014, 330 : 169 - 174
  • [39] Electrically Tunable Goos-Hanchen Shift of Light Beam Reflected From a Graphene-on-Dielectric Surface
    Jiang, Leyong
    Wang, Qingkai
    Xiang, Yuanjiang
    Dai, Xiaoyu
    Wen, Shuangchun
    IEEE PHOTONICS JOURNAL, 2013, 5 (03):
  • [40] Polarization tunable spatial and angular Goos-Hanchen shift and Imbert-Fedorov shift using long range surface plasmon
    Goswami, Nabamita
    Saha, Ardhendu
    Kar, Aparupa
    NONLINEAR FREQUENCY GENERATION AND CONVERSION: MATERIALS, DEVICES, AND APPLICATIONS XIV, 2015, 9347