Comparison of the Goos-Hanchen Shift Induced by Surface Plasmon Resonance in Metal-MoSe2-Graphene Structure

被引:4
|
作者
Han, Lei [1 ]
Li, Keliang [1 ,2 ]
Wu, Chuan [1 ]
机构
[1] China Univ Geosci Wuhan, Sch Mech Engn & Elect Informat, Wuhan 430074, Peoples R China
[2] Inst Marine Geol Explorat Technol, Guangzhou Marine Geol Survey, Guangzhou 510075, Peoples R China
关键词
Goos-Hanchen shift; Surface plasmon resonance; Metal; MoSe2; Graphene; Sensitivity; BLACK PHOSPHORUS; SPR BIOSENSOR; PERFORMANCE; GIANT;
D O I
10.1007/s11468-020-01246-z
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The surface plasmon resonance (SPR) based on the two-dimensional (2D) materials is proposed to enhance the Goos-Hanchen (GH) shift. In MoSe2-graphene-coated heterostructure with different metals (Ag/Cu/Au), the GH shift is significantly enhanced. In order to realize high GHshift, the number of MoSe(2)and graphene layer are optimized. Through comparative analysis, by using Ag as the metal, the best GH shift up to 434.7 lambda can be achieved with the MoSe(2)and graphene monolayer. TheoptimumGH shifts of Au/Cu-MoSe2-graphene structures are 360.7 lambda and 190.1 lambda, respectively. Therefore,the highest GH shift corresponding to the sensitivity of 6.600 x 10(5)lambda/RIU is obtained by Ag-MoSe2-graphene structures. Moreover,the sensitivity of Au-MoSe2-graphene structures is 5.815 x 10(5)lambda/RIU,which is about 1000 times higher than the Au, Au-graphene, and Au-MoSe(2)structure. The GH shift sensor with 2D-materialsan be extensive used in the fields of biological researches, optical sensing, and measurement.
引用
收藏
页码:2195 / 2203
页数:9
相关论文
共 50 条
  • [21] Long Range Surface Plasmon Enhanced Tunable Goos-Hanchen Shift in ZnSe Prism
    Ghosh, Arijit
    Goswami, Nabamita
    Saha, Ardhendu
    PROCEEDING OF INTERNATIONAL CONFERENCE ON RECENT TRENDS IN APPLIED PHYSICS & MATERIAL SCIENCE (RAM 2013), 2013, 1536 : 1310 - 1311
  • [22] Weak value amplification of an off-resonance Goos-Hanchen shift in a Kretschmann-Raether surface plasmon resonance device
    Parks, A. D.
    Spence, S. E.
    APPLIED OPTICS, 2015, 54 (18) : 5872 - 5876
  • [23] The Goos-Hanchen shift from the sandwich structure with dielectric/anisotropic metamaterials/metal
    Zhao Yu-Huan
    Zhang Li-Wei
    Wang Qin
    Li Wei-Bin
    Li Li-Xin
    Zhao Jun-Fang
    Du Gui-Qiang
    JOURNAL OF INFRARED AND MILLIMETER WAVES, 2011, 30 (05) : 463 - 468
  • [24] Highly sensitive surface plasmon resonance chemical sensor based on Goos-Hanchen effects
    Yin, Xiaobo
    Hesselink, Lambertus
    PLASMONICS: NANOIMAGING, NANOFABRICATION, AND THEIR APPLICATIONS II, 2006, 6324
  • [25] Goos-Hanchen shift of a light beam tunable by graphene in the resonant optical tunneling structure
    Bocharov, A. A.
    JOURNAL OF OPTICS, 2022, 24 (11)
  • [26] Giant transmission Goos-Hanchen shift in surface plasmon polaritons excitation and its physical origin
    Yang Yang
    Liu Ju
    Li Zhi-Yuan
    CHINESE PHYSICS B, 2015, 24 (07)
  • [27] Resonant tunneling and enhanced Goos-Hanchen shift in a graphene double velocity barrier structure
    Wang, Y.
    Liu, Y.
    Wang, B.
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2013, 53 : 186 - 192
  • [28] Experimental observation of the propagation-dependent beam profile distortion and Goos-Hanchen shift under the surface plasmon resonance condition
    Wan, Yuhang
    Zheng, Zheng
    Zhu, Jinsong
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2011, 28 (02) : 314 - 318
  • [29] Giant tunable Goos-Hanchen shifts based on surface plasmon resonance with Dirac semimetal films
    You, Qi
    Li, Zhongfu
    Jiang, Leyong
    Guo, Jun
    Dai, Xiaoyu
    Xiang, Yuanjiang
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2020, 53 (01)
  • [30] Large positive and negative Goos-Hanchen shifts near the surface plasmon resonance in subwavelength grating
    Petrov, Nikolai, I
    Danilov, Viktor A.
    Popov, Vladimir V.
    Usievich, Boris A.
    OPTICS EXPRESS, 2020, 28 (05) : 7552 - 7564