Evaluation of Measurement Uncertainties in Human Diffusion Tensor Imaging (DTI)-Derived Parameters and Optimization of Clinical DTI Protocols With a Wild Bootstrap Analysis

被引:29
|
作者
Zhu, Tong [2 ]
Liu, Xiaoxu [3 ]
Gaugh, Michelle D. [4 ]
Connelly, Patrick R. [2 ]
Ni, Hongyan [1 ]
Ekholm, Sven [1 ]
Schifitto, Giovanni [4 ]
Zhong, Jianhui [1 ,2 ]
机构
[1] Univ Rochester, Dept Imaging Sci, Rochester, NY 14642 USA
[2] Univ Rochester, Dept Biomed Engn, Rochester, NY 14642 USA
[3] Univ Rochester, Dept Elect & Comp Engn, Rochester, NY 14642 USA
[4] Univ Rochester, Dept Neurol, Rochester, NY 14642 USA
基金
美国国家卫生研究院;
关键词
diffusion tensor imaging; measurement uncertainty; wild bootstrap analysis; Monte Carlo simulation; DTI protocol selection; WHITE-MATTER; HUMAN BRAIN; FRACTIONAL ANISOTROPY; FIBER-ORIENTATION; SPIN-ECHO; MRI; SCHEMES; IMAGES; NOISE; EPI;
D O I
10.1002/jmri.21647
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Purpose: To quantify measurement uncertainties of fractional anisotropy, mean diffusivity, and principal eigenvector orientations in human diffusion tensor imaging (DTI) data acquired with common clinical protocols using a wild bootstrap analysis, and to establish optimal scan protocols for clinical DTI acquisitions. Materials and Methods: A group of 13 healthy volunteers were scanned using three commonly used DTI protocols with similar total scan times. Two important parameters-the number of unique diffusion gradient directions (NUDG) and the ratio of the total number of diffusion-weighted (DW) images to the total number of non-DW images (DTIR)-were analyzed in order to investigate their combined effects on uncertainties of DTI-derived parameters, using results from both the Monte Carlo simulation and the wild bootstrap analysis of uncertainties in human DTI data. Results: The wild bootstrap analysis showed that uncertainties in human DTI data are significantly affected by both NUDG and DTIR in many brain regions. These results agree with previous predictions based on error-propagations as well as results from simulations. Conclusion: Our results demonstrate that within a clinically feasible DTI scan time of about 10 minutes, a protocol with number of diffusion gradient directions close to 30 provides nearly optimal measurement results when combined with a ratio of the total number of DW images over non-DW images equal to six. Wild bootstrap can serve as a useful tool to quantify the measurement uncertainty from human DTI data.
引用
收藏
页码:422 / 435
页数:14
相关论文
共 50 条
  • [31] DIFFUSION TENSOR IMAGING (DTI)-BASED ANALYSIS OF FIBER TRACT ABNORMALITIES IN A MOUSE MODEL OF PRENATAL ALCOHOL EXPOSURE
    O'Leary-Moore, S. K.
    Johnson, G. A.
    Calabrese, E.
    Budin, F.
    Oguz, I.
    Styner, M. A.
    Parnell, S. E.
    Sulik, K. K.
    ALCOHOLISM-CLINICAL AND EXPERIMENTAL RESEARCH, 2012, 36 : 312A - 312A
  • [32] Diffusion tensor imaging (DTI) of human lower leg muscles: correlation between DTI parameters and muscle power with different ankle positions (Apr, 10.1007/s11604-022-01274-1, 2022)
    Takao, Shoichiro
    Kaneda, Maho
    Sasahara, Mihoko
    Takayama, Suzuka
    Matsumura, Yoshitaka
    Okahisa, Tetsuya
    Goto, Tsuyoshi
    Sato, Nori
    Katoh, Shinsuke
    Harada, Masafumi
    Ueno, Junji
    JAPANESE JOURNAL OF RADIOLOGY, 2022, 40 (09) : 949 - 950
  • [33] Diffusion Tensor Imaging (DTI) Findings Following Pediatric Non-Penetrating TBI: A Meta-Analysis
    Roberts, R. M.
    Mathias, J. L.
    Rose, S. E.
    DEVELOPMENTAL NEUROPSYCHOLOGY, 2014, 39 (08) : 600 - 637
  • [34] Influence of Analysis Technique on Measurement of Diffusion Tensor Imaging Parameters
    Urger, Efsun
    DeBellis, Michael D.
    Hooper, Steven R.
    Woolley, Donald P.
    Chen, Steven
    Provenzale, James M.
    AMERICAN JOURNAL OF ROENTGENOLOGY, 2013, 200 (05) : W510 - W517
  • [35] VISUALIZATION OF PERIPROSTATIC NEUROVASCULAR BUNDLES BEFORE AND AFTER RADICAL PROSTATECTOMY BY MEANS OF DIFFUSION TENSOR IMAGING (DTI), WITH CLINICAL CORRELATIONS
    De Luyk, Nicolo
    Siracusano, Salvatore
    Cybulski, Adam J.
    De Marco, Vincenzo
    De Marchi, Davide
    Corsi, Paolo
    Porcaro, Antonio B.
    Tafuri, Alessandro
    Cacciamani, Giovanni
    Di Paola, V.
    Negrelli, R.
    Manfredi, Riccardo
    Mucelli, Roberto Pozzi
    Artibani, Walter
    ANTICANCER RESEARCH, 2017, 37 (04) : 2124 - 2124
  • [36] EVALUATION OF MICROSTRUCTURAL WHITE MATTER LESIONS IN PATIENTS WITH SUBCORTICAL VASCULAR COGNITIVE IMPAIRMENT BY USING DIFFUSION TENSOR IMAGING(DTI)
    Dong
    Lv
    Li
    INTERNATIONAL JOURNAL OF BEHAVIORAL MEDICINE, 2012, 19 : S174 - S174
  • [37] Diffusion tensor magnetic resonance imaging of the normal breast: reproducibility of DTI-derived fractional anisotropy and apparent diffusion coefficient at 3.0 T
    Tagliafico, A.
    Rescinito, G.
    Monetti, F.
    Villa, A.
    Chiesa, F.
    Fisci, E.
    Pace, D.
    Calabrese, M.
    RADIOLOGIA MEDICA, 2012, 117 (06): : 992 - 1003
  • [38] Bootstrap analysis of diffusion tensor and mean apparent propagator parameters derived from multiband diffusion MRI
    Bernstein, Adam S.
    Chen, Nan-kuei
    Trouard, Theodore P.
    MAGNETIC RESONANCE IN MEDICINE, 2019, 82 (05) : 1796 - 1803
  • [39] Brain white matter asymmetries in humans and non-human primates: A comparative Diffusion Tensor Imaging (DTI) study.
    Rilling, James K.
    Errangi, Bhargav K.
    Li, Longchuan
    Glasser, Matthew
    Zhang, Xiaodong
    Mayberg, Helen
    Hu, Xiaoping
    Preuss, Todd M.
    AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY, 2010, : 198 - 198
  • [40] Temporal course of cerebral water diffusion in CADASIL: Follow-up study of two years with diffusion tensor imaging (DTI) and histogram analysis
    Molko, N
    Pappata, S
    Mangin, JF
    Poupon, C
    Poupon, F
    Antoinette, J
    Le Bihan, D
    Bousser, MG
    Hugues, C
    NEUROLOGY, 2001, 56 (08) : A258 - A258