Evaluation of Measurement Uncertainties in Human Diffusion Tensor Imaging (DTI)-Derived Parameters and Optimization of Clinical DTI Protocols With a Wild Bootstrap Analysis

被引:29
|
作者
Zhu, Tong [2 ]
Liu, Xiaoxu [3 ]
Gaugh, Michelle D. [4 ]
Connelly, Patrick R. [2 ]
Ni, Hongyan [1 ]
Ekholm, Sven [1 ]
Schifitto, Giovanni [4 ]
Zhong, Jianhui [1 ,2 ]
机构
[1] Univ Rochester, Dept Imaging Sci, Rochester, NY 14642 USA
[2] Univ Rochester, Dept Biomed Engn, Rochester, NY 14642 USA
[3] Univ Rochester, Dept Elect & Comp Engn, Rochester, NY 14642 USA
[4] Univ Rochester, Dept Neurol, Rochester, NY 14642 USA
基金
美国国家卫生研究院;
关键词
diffusion tensor imaging; measurement uncertainty; wild bootstrap analysis; Monte Carlo simulation; DTI protocol selection; WHITE-MATTER; HUMAN BRAIN; FRACTIONAL ANISOTROPY; FIBER-ORIENTATION; SPIN-ECHO; MRI; SCHEMES; IMAGES; NOISE; EPI;
D O I
10.1002/jmri.21647
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Purpose: To quantify measurement uncertainties of fractional anisotropy, mean diffusivity, and principal eigenvector orientations in human diffusion tensor imaging (DTI) data acquired with common clinical protocols using a wild bootstrap analysis, and to establish optimal scan protocols for clinical DTI acquisitions. Materials and Methods: A group of 13 healthy volunteers were scanned using three commonly used DTI protocols with similar total scan times. Two important parameters-the number of unique diffusion gradient directions (NUDG) and the ratio of the total number of diffusion-weighted (DW) images to the total number of non-DW images (DTIR)-were analyzed in order to investigate their combined effects on uncertainties of DTI-derived parameters, using results from both the Monte Carlo simulation and the wild bootstrap analysis of uncertainties in human DTI data. Results: The wild bootstrap analysis showed that uncertainties in human DTI data are significantly affected by both NUDG and DTIR in many brain regions. These results agree with previous predictions based on error-propagations as well as results from simulations. Conclusion: Our results demonstrate that within a clinically feasible DTI scan time of about 10 minutes, a protocol with number of diffusion gradient directions close to 30 provides nearly optimal measurement results when combined with a ratio of the total number of DW images over non-DW images equal to six. Wild bootstrap can serve as a useful tool to quantify the measurement uncertainty from human DTI data.
引用
收藏
页码:422 / 435
页数:14
相关论文
共 50 条
  • [21] Diffusion tensor imaging of the human thigh: consideration of DTI-based fiber tracking stop criteria
    Johannes Forsting
    Robert Rehmann
    Martijn Froeling
    Matthias Vorgerd
    Martin Tegenthoff
    Lara Schlaffke
    Magnetic Resonance Materials in Physics, Biology and Medicine, 2020, 33 : 343 - 355
  • [22] Diffusion tensor imaging of the human thigh: consideration of DTI-based fiber tracking stop criteria
    Forsting, Johannes
    Rehmann, Robert
    Froeling, Martijn
    Vorgerd, Matthias
    Tegenthoff, Martin
    Schlaffke, Lara
    MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE, 2020, 33 (03) : 343 - 355
  • [23] Quantitative analysis of diffusion tensor imaging (DTI) using statistical parametric mapping (SPM) for brain disorders
    Jae-Seung Lee
    In-Chul Im
    Su-Man Kang
    Eun-Hoe Goo
    Byung-Joon Kwak
    Journal of the Korean Physical Society, 2013, 63 : 83 - 88
  • [24] re: Diffusion Tensor Imaging (DTI) of the Cesarean-Scarred Uterus in vivo at 3T: Comparison Study of DTI Parameters Between Nonpregnant and Pregnant Cases
    Wnorowski, Amelia M.
    JOURNAL OF MAGNETIC RESONANCE IMAGING, 2020, 51 (01) : 131 - 132
  • [25] Diffusion tensor imaging of cerebral infarction: Analysis of ADC and DTI scalar metrics (fractional anisotropy and eigenvalues)
    Yoshikawa, T
    Aoki, S
    Masutani, Y
    Abe, O
    Mori, H
    Ohtomo, K
    RADIOLOGY, 2002, 225 : 278 - 279
  • [26] Quantitative analysis of diffusion tensor imaging (DTI) using statistical parametric mapping (SPM) for brain disorders
    Lee, Jae-Seung
    Im, In-Chul
    Kang, Su-Man
    Goo, Eun-Hoe
    Kwak, Byung-Joon
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2013, 63 (01) : 83 - 88
  • [27] A Prospective Study to Evaluate the Clinical and Diffusion Tensor Imaging (DTI) Correlation in Patients with Lumbar Disc Herniation with Radiculopathy
    Singh, Roop
    Khare, Neeraj
    Aggarwal, Shalini
    Jain, Mantu
    Kaur, Svareen
    Singh, Harshil Deep
    SPINE SURGERY AND RELATED RESEARCH, 2023, 7 (03): : 257 - 267
  • [28] Diffusion tensor imaging (DTI) of rodent brains in vivo using a 1.5T clinical MR scanner
    Lee, FKH
    Fang, MR
    Antonio, GE
    Yeung, DKW
    Chan, ETY
    Zhang, LH
    Yew, DT
    Ahuja, AT
    JOURNAL OF MAGNETIC RESONANCE IMAGING, 2006, 23 (05) : 747 - 751
  • [29] Diffusion Tensor Imaging (DTI) of the Kidney at 3 Tesla-Feasibility, Protocol Evaluation and Comparison to 1.5 Tesla
    Notohamiprodjo, Mike
    Dietrich, Olaf
    Horger, Wihelm
    Horng, Annie
    Helck, Andreas D.
    Herrmann, Karin A.
    Reiser, Maximilian F.
    Glaser, Christian
    INVESTIGATIVE RADIOLOGY, 2010, 45 (05) : 245 - 254
  • [30] Predicting Isocitrate Dehydrogenase Mutation Status of Grade 2-4 Gliomas with Diffusion Tensor Imaging (DTI) Parameters Derived from Model-Based DTI and Model-Free Q-Sampling Imaging Reconstructions
    Yuzkan, Sabahattin
    Mutlu, Samet
    Han, Mehmet
    Akkurt, Tuce Soylemez
    Sencan, Fahir
    Cabuk, Fatmagul Kusku
    Gunaldi, Omur
    Tugcu, Bekir
    Kocak, Burak
    WORLD NEUROSURGERY, 2023, 177 : E580 - E592