Evaluation of Measurement Uncertainties in Human Diffusion Tensor Imaging (DTI)-Derived Parameters and Optimization of Clinical DTI Protocols With a Wild Bootstrap Analysis

被引:29
|
作者
Zhu, Tong [2 ]
Liu, Xiaoxu [3 ]
Gaugh, Michelle D. [4 ]
Connelly, Patrick R. [2 ]
Ni, Hongyan [1 ]
Ekholm, Sven [1 ]
Schifitto, Giovanni [4 ]
Zhong, Jianhui [1 ,2 ]
机构
[1] Univ Rochester, Dept Imaging Sci, Rochester, NY 14642 USA
[2] Univ Rochester, Dept Biomed Engn, Rochester, NY 14642 USA
[3] Univ Rochester, Dept Elect & Comp Engn, Rochester, NY 14642 USA
[4] Univ Rochester, Dept Neurol, Rochester, NY 14642 USA
基金
美国国家卫生研究院;
关键词
diffusion tensor imaging; measurement uncertainty; wild bootstrap analysis; Monte Carlo simulation; DTI protocol selection; WHITE-MATTER; HUMAN BRAIN; FRACTIONAL ANISOTROPY; FIBER-ORIENTATION; SPIN-ECHO; MRI; SCHEMES; IMAGES; NOISE; EPI;
D O I
10.1002/jmri.21647
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Purpose: To quantify measurement uncertainties of fractional anisotropy, mean diffusivity, and principal eigenvector orientations in human diffusion tensor imaging (DTI) data acquired with common clinical protocols using a wild bootstrap analysis, and to establish optimal scan protocols for clinical DTI acquisitions. Materials and Methods: A group of 13 healthy volunteers were scanned using three commonly used DTI protocols with similar total scan times. Two important parameters-the number of unique diffusion gradient directions (NUDG) and the ratio of the total number of diffusion-weighted (DW) images to the total number of non-DW images (DTIR)-were analyzed in order to investigate their combined effects on uncertainties of DTI-derived parameters, using results from both the Monte Carlo simulation and the wild bootstrap analysis of uncertainties in human DTI data. Results: The wild bootstrap analysis showed that uncertainties in human DTI data are significantly affected by both NUDG and DTIR in many brain regions. These results agree with previous predictions based on error-propagations as well as results from simulations. Conclusion: Our results demonstrate that within a clinically feasible DTI scan time of about 10 minutes, a protocol with number of diffusion gradient directions close to 30 provides nearly optimal measurement results when combined with a ratio of the total number of DW images over non-DW images equal to six. Wild bootstrap can serve as a useful tool to quantify the measurement uncertainty from human DTI data.
引用
收藏
页码:422 / 435
页数:14
相关论文
共 50 条
  • [1] An optimized wild bootstrap method for evaluation of measurement uncertainties of DTI-derived parameters in human brain
    Zhu, Tong
    Liu, Xiaoxu
    Connelly, Patrick R.
    Zhong, Jianhui
    NEUROIMAGE, 2008, 40 (03) : 1144 - 1156
  • [2] Analysis of Visualization Techniques in Diffusion Tensor Imaging (DTI)
    Muhammed, Anzer M.
    Aswathi, V
    Bijoy, Edet K.
    2018 SECOND INTERNATIONAL CONFERENCE ON ADVANCES IN ELECTRONICS, COMPUTERS AND COMMUNICATIONS (ICAECC), 2018,
  • [3] Diffusion tensor imaging (DTI) of human lower leg muscles: correlation between DTI parameters and muscle power with different ankle positions
    Shoichiro Takao
    Maho Kaneda
    Mihoko Sasahara
    Suzuka Takayama
    Yoshitaka Matsumura
    Tetsuya Okahisa
    Tsuyoshi Goto
    Nori Sato
    Shinsuke Katoh
    Masafumi Harada
    Junji Ueno
    Japanese Journal of Radiology, 2022, 40 : 939 - 948
  • [4] The DTI Challenge: Toward Standardized Evaluation of Diffusion Tensor Imaging Tractography for Neurosurgery
    Pujol, Sonia
    Wells, William
    Pierpaoli, Carlo
    Brun, Caroline
    Gee, James
    Cheng, Guang
    Vemuri, Baba
    Commowick, Olivier
    Prima, Sylvain
    Stamm, Aymeric
    Goubran, Maged
    Khan, Ali
    Peters, Terry
    Neher, Peter
    Maier-Hein, Klaus H.
    Shi, Yundi
    Tristan-Vega, Antonio
    Veni, Gopalkrishna
    Whitaker, Ross
    Styner, Martin
    Westin, Carl-Fredrik
    Gouttard, Sylvain
    Norton, Isaiah
    Chauvin, Laurent
    Mamata, Hatsuho
    Gerig, Guido
    Nabavi, Arya
    Golby, Alexandra
    Kikinis, Ron
    JOURNAL OF NEUROIMAGING, 2015, 25 (06) : 875 - 882
  • [5] Diffusion Tensor Imaging (DTI) of the Normal Hum Uterus In Vivo at 3 Tesla: Comparison of DTI parameters in the Different Uterine Layers
    Fujimoto, Koji
    Kido, Aki
    Okada, Tomohisa
    Uchikoshi, Masato
    Togashi, Kaori
    JOURNAL OF MAGNETIC RESONANCE IMAGING, 2013, 38 (06) : 1494 - 1500
  • [6] Glaucoma severity affects diffusion tensor imaging (DTI) parameters of the optic nerve and optic radiation
    Sidek, S.
    Ramli, N.
    Rahmat, K.
    Ramli, N. M.
    Abdulrahman, F.
    Tan, L. K.
    EUROPEAN JOURNAL OF RADIOLOGY, 2014, 83 (08) : 1437 - 1441
  • [7] Serial hyperacute diffusion tensor imaging (DTI) derived eigenvalues reflect tissue microstructural status
    Thandeswaran, S.
    Harston, G.
    Fintan, S.
    Cellerini, M.
    Jezzard, P.
    Payne, S.
    Kennedy, J.
    CEREBROVASCULAR DISEASES, 2014, 37 : 83 - 83
  • [8] Altered diffusion tensor imaging (DTI) parameters in brain parenchyma after traumatic brain injury
    Elsorogy, Lamiaa Galal
    Abdelrazek, Amany Mohamed
    Awad, Hanee Ali
    Abdelwahab, Rihame Mohamed
    EGYPTIAN JOURNAL OF RADIOLOGY AND NUCLEAR MEDICINE, 2022, 53 (01):
  • [9] The reproducibility of measurements using a standardization phantom for the evaluation of fractional anisotropy (FA) derived from diffusion tensor imaging (DTI)
    Kimura, Mitsuhiro
    Yabuuchi, Hidetake
    Matsumoto, Ryoji
    Kobayashi, Koji
    Yamashita, Yasuo
    Nagatomo, Kazuya
    Mikayama, Ryoji
    Kamitani, Takeshi
    Sagiyama, Koji
    Yamasaki, Yuzo
    MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE, 2020, 33 (02) : 293 - 298
  • [10] Altered diffusion tensor imaging (DTI) parameters in brain parenchyma after traumatic brain injury
    Lamiaa Galal Elsorogy
    Amany Mohamed Abdelrazek
    Hanee Ali Awad
    Rihame Mohamed Abdelwahab
    Egyptian Journal of Radiology and Nuclear Medicine, 53