Turing instabilities in reaction-diffusion systems with cross diffusion

被引:36
|
作者
Fanelli, Duccio [1 ,2 ]
Cianci, Claudia [2 ,3 ]
Di Patti, Francesca [1 ,2 ]
机构
[1] Univ Florence, Dipartimento Fis & Astron, I-50019 Sesto Fiorentino, Italy
[2] Ist Nazl Fis Nucl, Sez Firenze, I-50019 Sesto Fiorentino, Italy
[3] Univ Florence, Dipartimento Sistemi & Informat, I-50139 Florence, Italy
来源
EUROPEAN PHYSICAL JOURNAL B | 2013年 / 86卷 / 04期
关键词
PATTERN-FORMATION; PATCHINESS; CELLS;
D O I
10.1140/epjb/e2013-30649-7
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
The Turing instability paradigm is revisited in the context of a multispecies diffusion scheme derived from a self-consistent microscopic formulation. The analysis is developed with reference to the case of two species. These latter share the same spatial reservoir and experience a degree of mutual interference due to the competition for the available resources. Turing instability can set in for all ratios of the main diffusivities, also when the (isolated) activator diffuses faster then the (isolated) inhibitor. This conclusion, at odd with the conventional vision, is here exemplified for the Brusselator model and ultimately stems from having assumed a generalized model of multispecies diffusion, fully anchored to first principles, which also holds under crowded conditions.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Cross-diffusion and pattern formation in reaction-diffusion systems
    Vanag, Vladimir K.
    Epstein, Irving R.
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2009, 11 (06) : 897 - 912
  • [32] Instability induced by cross-diffusion in reaction-diffusion systems
    Tian, Canrong
    Lin, Zhigui
    Pedersen, Michael
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2010, 11 (02) : 1036 - 1045
  • [33] Correction to: General conditions for Turing and wave instabilities in reaction–diffusion systems
    Edgardo Villar-Sepúlveda
    Alan R. Champneys
    Journal of Mathematical Biology, 2023, 86
  • [34] Instabilities in hyperbolic reaction-diffusion system with cross diffusion and species-dependent inertia
    Ghorai, Santu
    Bairagi, Nandadulal
    CHAOS SOLITONS & FRACTALS, 2022, 165
  • [35] Spiral instabilities in a reaction-diffusion system
    Zhou, LQ
    Ouyang, Q
    JOURNAL OF PHYSICAL CHEMISTRY A, 2001, 105 (01): : 112 - 118
  • [36] EXPLOSIVE INSTABILITIES OF REACTION-DIFFUSION EQUATIONS
    WILHELMSSON, H
    PHYSICAL REVIEW A, 1987, 36 (02): : 965 - 966
  • [37] Turing Instability of Brusselator in the Reaction-Diffusion Network
    Ji, Yansu
    Shen, Jianwei
    COMPLEXITY, 2020, 2020
  • [38] INSTABILITIES IN PROPAGATING REACTION-DIFFUSION FRONTS
    HORVATH, D
    PETROV, V
    SCOTT, SK
    SHOWALTER, K
    JOURNAL OF CHEMICAL PHYSICS, 1993, 98 (08): : 6332 - 6343
  • [39] Turing patterns in a reaction-diffusion epidemic model
    Jia, Yanfei
    Cai, Yongli
    Shi, Hongbo
    Fu, Shengmao
    Wang, Weiming
    INTERNATIONAL JOURNAL OF BIOMATHEMATICS, 2018, 11 (02)
  • [40] Time-delay-induced instabilities in reaction-diffusion systems
    Sen, Shrabani
    Ghosh, Pushpita
    Riaz, Syed Shahed
    Ray, Deb Shankar
    PHYSICAL REVIEW E, 2009, 80 (04):