Turing instabilities in reaction-diffusion systems with cross diffusion

被引:36
|
作者
Fanelli, Duccio [1 ,2 ]
Cianci, Claudia [2 ,3 ]
Di Patti, Francesca [1 ,2 ]
机构
[1] Univ Florence, Dipartimento Fis & Astron, I-50019 Sesto Fiorentino, Italy
[2] Ist Nazl Fis Nucl, Sez Firenze, I-50019 Sesto Fiorentino, Italy
[3] Univ Florence, Dipartimento Sistemi & Informat, I-50139 Florence, Italy
来源
EUROPEAN PHYSICAL JOURNAL B | 2013年 / 86卷 / 04期
关键词
PATTERN-FORMATION; PATCHINESS; CELLS;
D O I
10.1140/epjb/e2013-30649-7
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
The Turing instability paradigm is revisited in the context of a multispecies diffusion scheme derived from a self-consistent microscopic formulation. The analysis is developed with reference to the case of two species. These latter share the same spatial reservoir and experience a degree of mutual interference due to the competition for the available resources. Turing instability can set in for all ratios of the main diffusivities, also when the (isolated) activator diffuses faster then the (isolated) inhibitor. This conclusion, at odd with the conventional vision, is here exemplified for the Brusselator model and ultimately stems from having assumed a generalized model of multispecies diffusion, fully anchored to first principles, which also holds under crowded conditions.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Turing instability and traveling fronts for a nonlinear reaction-diffusion system with cross-diffusion
    Gambino, G.
    Lombardo, M. C.
    Sammartino, M.
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2012, 82 (06) : 1112 - 1132
  • [22] Turing Patterns in a Reaction-Diffusion System
    WU Yan-Ning WANG Ping-Jian HOU Chun-Ju LIU Chang-Song ZHU Zhen-Gang Key Laboratory of Material Physics
    CommunicationsinTheoreticalPhysics, 2006, 45 (04) : 761 - 764
  • [23] Turing patterns in a reaction-diffusion system
    Wu, YN
    Wang, PJ
    Hou, CJ
    Liu, CS
    Zhu, ZG
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2006, 45 (04) : 761 - 764
  • [24] Turing instability in the reaction-diffusion network
    Zheng, Qianqian
    Shen, Jianwei
    Xu, Yong
    PHYSICAL REVIEW E, 2020, 102 (06)
  • [25] TURING PATTERNS IN GENERAL REACTION-DIFFUSION SYSTEMS OF BRUSSELATOR TYPE
    Ghergu, Marius
    Radulescu, Vicentiu
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2010, 12 (04) : 661 - 679
  • [26] Turing's Diffusive Threshold in Random Reaction-Diffusion Systems
    Haas, Pierre A.
    Goldstein, Raymond E.
    PHYSICAL REVIEW LETTERS, 2021, 126 (23)
  • [27] Effect of randomness and anisotropy on Turing patterns in reaction-diffusion systems
    Bose, I
    Chaudhuri, I
    PHYSICAL REVIEW E, 1997, 55 (05) : 5291 - 5296
  • [28] TURING PATTERNS AND WAVEFRONTS FOR REACTION-DIFFUSION SYSTEMS IN AN INFINITE CHANNEL
    Chen, Chao-Nien
    Ei, Shin-Ichiro
    Lin, Ya-Ping
    SIAM JOURNAL ON APPLIED MATHEMATICS, 2010, 70 (08) : 2822 - 2843
  • [29] Square Turing patterns in reaction-diffusion systems with coupled layers
    Li, Jing
    Wang, Hongli
    Ouyang, Qi
    CHAOS, 2014, 24 (02)
  • [30] Turing instability in sub-diffusive reaction-diffusion systems
    Nec, Y.
    Nepomnyashchy, A. A.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (49) : 14687 - 14702