A generalized quantile regression model

被引:5
|
作者
Nassiri, Vahid [1 ]
Loris, Ignace [2 ]
机构
[1] Vrije Univ Brussel, Dept Math, Brussels, Belgium
[2] Univ Libre Bruxelles, Dept Math, Brussels, Belgium
关键词
quantile regression; log-concave density; penalization; soft thresholding; outlier; long tail; THRESHOLDING ALGORITHM; SHRINKAGE; PROBABILITY; STATISTICS; HISTORY;
D O I
10.1080/02664763.2013.780158
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
A new class of probability distributions, the so-called connected double truncated gamma distribution, is introduced. We show that using this class as the error distribution of a linear model leads to a generalized quantile regression model that combines desirable properties of both least-squares and quantile regression methods: robustness to outliers and differentiable loss function.
引用
收藏
页码:1090 / 1105
页数:16
相关论文
共 50 条
  • [41] Jackknife Model Averaging for Composite Quantile Regression
    YOU Kang
    WANG Miaomiao
    ZOU Guohua
    Journal of Systems Science & Complexity, 2024, 37 (04) : 1604 - 1637
  • [42] A mark-specific quantile regression model
    Qu, Lianqiang
    Sun, Liuquan
    Sun, Yanqing
    BIOMETRIKA, 2024, 111 (01) : 255 - 272
  • [43] Functional partially linear quantile regression model
    Ying Lu
    Jiang Du
    Zhimeng Sun
    Metrika, 2014, 77 : 317 - 332
  • [44] Quantile Regression Model for Impact Toughness Estimation
    Tamminen, Satu
    Juutilainen, Ilmari
    Roning, Juha
    ADVANCES IN DATA MINING: APPLICATIONS AND THEORETICAL ASPECTS, 2010, 6171 : 263 - 276
  • [45] Jackknife Model Averaging for Composite Quantile Regression
    You, Kang
    Wang, Miaomiao
    Zou, Guohua
    JOURNAL OF SYSTEMS SCIENCE & COMPLEXITY, 2024, 37 (04) : 1604 - 1637
  • [46] Bayesian model selection in ordinal quantile regression
    Alhamzawi, Rahim
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2016, 103 : 68 - 78
  • [47] Functional partially linear quantile regression model
    Lu, Ying
    Du, Jiang
    Sun, Zhimeng
    METRIKA, 2014, 77 (02) : 317 - 332
  • [48] Bayesian analysis of a Tobit quantile regression model
    Yu, Keming
    Stander, Julian
    JOURNAL OF ECONOMETRICS, 2007, 137 (01) : 260 - 276
  • [49] Quantile-quantile plot for deviance residuals in the generalized linear model
    Ben, MG
    Yohai, VJ
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2004, 13 (01) : 36 - 47
  • [50] The unit generalized half-normal quantile regression model: formulation, estimation, diagnostics, and numerical applications
    Mazucheli, Josmar
    Korkmaz, Mustafa C.
    Menezes, Andre F. B.
    Leiva, Victor
    SOFT COMPUTING, 2023, 27 (01) : 279 - 295