A generalized quantile regression model

被引:5
|
作者
Nassiri, Vahid [1 ]
Loris, Ignace [2 ]
机构
[1] Vrije Univ Brussel, Dept Math, Brussels, Belgium
[2] Univ Libre Bruxelles, Dept Math, Brussels, Belgium
关键词
quantile regression; log-concave density; penalization; soft thresholding; outlier; long tail; THRESHOLDING ALGORITHM; SHRINKAGE; PROBABILITY; STATISTICS; HISTORY;
D O I
10.1080/02664763.2013.780158
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
A new class of probability distributions, the so-called connected double truncated gamma distribution, is introduced. We show that using this class as the error distribution of a linear model leads to a generalized quantile regression model that combines desirable properties of both least-squares and quantile regression methods: robustness to outliers and differentiable loss function.
引用
收藏
页码:1090 / 1105
页数:16
相关论文
共 50 条
  • [31] Multitask Quantile Regression Under the Transnormal Model
    Fan, Jianqing
    Xue, Lingzhou
    Zou, Hui
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2016, 111 (516) : 1726 - 1735
  • [32] On Asymmetric Market Model with Heteroskedasticity and Quantile Regression
    Cathy W. S. Chen
    Muyi Li
    Nga T. H. Nguyen
    Songsak Sriboonchitta
    Computational Economics, 2017, 49 : 155 - 174
  • [33] An amalgamation of crisp and fuzzy quantile regression model
    Mustafa, Saima
    Basharat, Hina
    Akgul, Ali
    Shahzad, Mohsin
    Sayed, Abdelhamied Farrag
    SIGMA JOURNAL OF ENGINEERING AND NATURAL SCIENCES-SIGMA MUHENDISLIK VE FEN BILIMLERI DERGISI, 2024, 42 (01): : 1 - 10
  • [34] Elastic net penalized quantile regression model
    Su, Meihong
    Wang, Wenjian
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2021, 392
  • [35] Nonparametric estimation of an additive quantile regression model
    Horowitz, JL
    Lee, S
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2005, 100 (472) : 1238 - 1249
  • [36] Bayesian bent line quantile regression model
    Li, Yi
    Hu, Zongyi
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2021, 50 (17) : 3972 - 3987
  • [37] Model-Robust Designs for Quantile Regression
    Kong, Linglong
    Wiens, Douglas P.
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2015, 110 (509) : 233 - 245
  • [38] An alternative estimator for the censored quantile regression model
    Buchinsky, M
    Hahn, JY
    ECONOMETRICA, 1998, 66 (03) : 653 - 671
  • [39] A quantile regression forecasting model for ICT development
    Yu, Tiffany Hui-Kuang
    MANAGEMENT DECISION, 2014, 52 (07) : 1263 - 1272
  • [40] Quantile regression in functional linear semiparametric model
    Tang Qingguo
    Kong, Linglong
    STATISTICS, 2017, 51 (06) : 1342 - 1358