Pipe flow of shear-thinning fluids

被引:12
|
作者
Lopez-Carranza, Santiago Nicolas [1 ]
Jenny, Mathieu [1 ]
Nouar, Cherif [1 ]
机构
[1] Univ Lorraine, LEMTA, CNRS UMR 7563, F-54504 Vandoeuvre Les Nancy, France
来源
COMPTES RENDUS MECANIQUE | 2012年 / 340卷 / 08期
关键词
Instability; Pipe flow; Non-Newtonian fluids; Spectral methods; LAMINAR-TURBULENT TRANSITION; HAGEN-POISEUILLE FLOW; YIELD-STRESS FLUID; CHANNEL FLOW; INSTABILITY; STABILITY;
D O I
10.1016/j.crme.2012.05.002
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Pipe flow of purely viscous shear-thinning fluids is studied using numerical simulations. The rheological behavior is described by the Carreau model. The flow field is decomposed as a base flow and a disturbance. The perturbation equations are then solved using a pseudo-spectral Petrov-Galerkin method. The time marching uses a fourth-order Adams-Bashforth scheme. In the case of an infinitesimal perturbation, a three-dimensional linear stability analysis is performed based on modal and non-modal approaches. It is shown that pipe flow of shear-thinning fluids is linearly stable and that for the range of rheological parameters considered, streamwise-independent vortices are optimally amplified. Nonlinear computations are done for finite amplitude two-dimensional disturbances, which consist of one pair of longitudinal rolls. The numerical results highlight a strong modification of the viscosity profile associated with the flow reorganization. For a given wall Reynolds number, shear-thinning reduces the energy gain of the perturbation. This is due to a reduction of the exchange energy between the base flow and the perturbation. Besides this, viscous dissipation decreases with increasing shear-thinning effects. (c) 2012 Academie des sciences. Published by Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:602 / 618
页数:17
相关论文
共 50 条
  • [41] Dynamics and rheology of particles in shear-thinning fluids
    Datt, Charu
    Elfring, Gwynn J.
    JOURNAL OF NON-NEWTONIAN FLUID MECHANICS, 2018, 262 : 107 - 114
  • [42] Mixing Performance of Baffles in Shear-Thinning Fluids
    Furukawa, Haruki
    Mizuno, Yoshito
    Kato, Yoshihito
    CHEMICAL ENGINEERING & TECHNOLOGY, 2021, 44 (08) : 1440 - 1446
  • [43] Mesoscale hydrodynamic modeling of a colloid in shear-thinning viscoelastic fluids under shear flow
    Ji, Shichen
    Jiang, Run
    Winkler, Roland G.
    Gompper, Gerhard
    JOURNAL OF CHEMICAL PHYSICS, 2011, 135 (13):
  • [44] Thermal convection of viscoelastic shear-thinning fluids
    Albaalbaki, Bashar
    Khayat, Roger E.
    Ahmed, Zahir U.
    FLUID DYNAMICS RESEARCH, 2016, 48 (06)
  • [45] General shear-thinning dynamics of confined fluids
    Yamada, S
    TRIBOLOGY LETTERS, 2002, 13 (03) : 167 - 171
  • [46] Lattice Boltzmann Simulation of Shear-Thinning Fluids
    Dirk Kehrwald
    Journal of Statistical Physics, 2005, 121 : 223 - 237
  • [47] Soft lubrication of model shear-thinning fluids
    Xu, Yuan
    Stokes, Jason R.
    TRIBOLOGY INTERNATIONAL, 2020, 152
  • [48] Lattice Boltzmann simulation of shear-thinning fluids
    Kehrwald, D
    JOURNAL OF STATISTICAL PHYSICS, 2005, 121 (1-2) : 223 - 237
  • [49] Vortex shedding in cylinder flow of shear-thinning fluids II. Flow characteristics
    Coelho, PM
    Pinho, FT
    JOURNAL OF NON-NEWTONIAN FLUID MECHANICS, 2003, 110 (2-3) : 177 - 193
  • [50] Dynamic settling of particles in shear flows of shear-thinning fluids
    Childs, L. H.
    Hogg, A. J.
    Pritchard, D.
    JOURNAL OF NON-NEWTONIAN FLUID MECHANICS, 2016, 235 : 83 - 94