Pipe flow of shear-thinning fluids

被引:12
|
作者
Lopez-Carranza, Santiago Nicolas [1 ]
Jenny, Mathieu [1 ]
Nouar, Cherif [1 ]
机构
[1] Univ Lorraine, LEMTA, CNRS UMR 7563, F-54504 Vandoeuvre Les Nancy, France
来源
COMPTES RENDUS MECANIQUE | 2012年 / 340卷 / 08期
关键词
Instability; Pipe flow; Non-Newtonian fluids; Spectral methods; LAMINAR-TURBULENT TRANSITION; HAGEN-POISEUILLE FLOW; YIELD-STRESS FLUID; CHANNEL FLOW; INSTABILITY; STABILITY;
D O I
10.1016/j.crme.2012.05.002
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Pipe flow of purely viscous shear-thinning fluids is studied using numerical simulations. The rheological behavior is described by the Carreau model. The flow field is decomposed as a base flow and a disturbance. The perturbation equations are then solved using a pseudo-spectral Petrov-Galerkin method. The time marching uses a fourth-order Adams-Bashforth scheme. In the case of an infinitesimal perturbation, a three-dimensional linear stability analysis is performed based on modal and non-modal approaches. It is shown that pipe flow of shear-thinning fluids is linearly stable and that for the range of rheological parameters considered, streamwise-independent vortices are optimally amplified. Nonlinear computations are done for finite amplitude two-dimensional disturbances, which consist of one pair of longitudinal rolls. The numerical results highlight a strong modification of the viscosity profile associated with the flow reorganization. For a given wall Reynolds number, shear-thinning reduces the energy gain of the perturbation. This is due to a reduction of the exchange energy between the base flow and the perturbation. Besides this, viscous dissipation decreases with increasing shear-thinning effects. (c) 2012 Academie des sciences. Published by Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:602 / 618
页数:17
相关论文
共 50 条
  • [31] Squeeze flow of concentrated suspensions of spheres in Newtonian and shear-thinning fluids
    Collomb, J
    Chaari, F
    Chaouche, M
    JOURNAL OF RHEOLOGY, 2004, 48 (02) : 405 - 416
  • [32] Secondary instabilities in Taylor-Couette flow of shear-thinning fluids
    Topayev, S.
    Nouar, C.
    Dusek, J.
    JOURNAL OF FLUID MECHANICS, 2022, 933
  • [33] Flow Bifurcations of Shear-Thinning Fluids in a Channel with Sudden Contraction and Expansion
    Patlazhan, S. A.
    Roshchin, D. E.
    Kravchenko, I. V.
    Berlin, A. A.
    RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY B, 2019, 13 (05) : 842 - 848
  • [34] Molecular dynamics simulation of the flow mechanism of shear-thinning fluids in a microchannel
    Yang, Gang
    Zheng, Ting
    Cheng, Qihao
    Zhang, Huichen
    CHINESE PHYSICS B, 2024, 33 (04)
  • [35] Molecular dynamics simulation of the flow mechanism of shear-thinning fluids in a microchannel
    杨刚
    郑庭
    程启昊
    张会臣
    Chinese Physics B, 2024, 33 (04) : 358 - 367
  • [36] Pipe Flow of a Dense Emulsion: Homogeneous Shear-Thinning or Shear-Induced Migration?
    Abbas, Micheline
    Pouplin, Amelie
    Masbernat, Olivier
    Line, Alain
    Decarre, Sandrine
    AICHE JOURNAL, 2017, 63 (11) : 5182 - 5195
  • [37] General Shear-Thinning Dynamics of Confined Fluids
    Shinji Yamada
    Tribology Letters, 2002, 13 : 167 - 171
  • [38] POWER CONSUMPTION FOR MIXING OF SHEAR-THINNING FLUIDS
    Ghirisan , Adina
    Miclaus, Vasile
    STUDIA UNIVERSITATIS BABES-BOLYAI CHEMIA, 2021, 66 (02): : 247 - 254
  • [39] Sedimentation of Fractal Aggregates in Shear-Thinning Fluids
    Trofa, Marco
    D'Avino, Gaetano
    APPLIED SCIENCES-BASEL, 2020, 10 (09):
  • [40] On the rheological characteristics of the shear-thinning model fluids
    Jaworski, Z
    Kiljanski, T
    INZYNIERIA CHEMICZNA I PROCESOWA, 2005, 26 (03): : 513 - 522