A numerical method for the fractional Schrodinger type equation of spatial dimension two

被引:28
|
作者
Ford, Neville J. [1 ]
Manuela Rodrigues, M. [2 ]
Vieira, Nelson [3 ,4 ]
机构
[1] Univ Chester, Dept Math, Chester CH1 4BJ, Cheshire, England
[2] Univ Aveiro, Dept Math, CIDMA Ctr Res & Dev Math & Applicat, P-3810193 Aveiro, Portugal
[3] CIDMA Ctr Res & Dev Math & Applicat, P-2411901 Leiria, Portugal
[4] Polytech Inst Leiria, Sch Technol & Management, P-2411901 Leiria, Portugal
关键词
fractional partial differential equation; fractional Schrodinger equation; finite difference method; stability; Mittag-Leffler function; FINITE-PART INTEGRALS; QUANTUM-MECHANICS;
D O I
10.2478/s13540-013-0028-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This work focuses on an investigation of the (n+1)-dimensional time-dependent fractional Schrodinger type equation. In the early part of the paper, the wave function is obtained using Laplace and Fourier transform methods and a symbolic operational form of the solutions in terms of Mittag-Leffler functions is provided. We present an expression for the wave function and for the quantum mechanical probability density. We introduce a numerical method to solve the case where the space component has dimension two. Stability conditions for the numerical scheme are obtained.
引用
收藏
页码:454 / 468
页数:15
相关论文
共 50 条
  • [41] An implicit numerical method for the two-dimensional fractional percolation equation
    Chen, S.
    Liu, F.
    Turner, I.
    Anh, V.
    APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (09) : 4322 - 4331
  • [42] Numerical method for generalized time fractional KdV-type equation
    Kong, Desong
    Xu, Yufeng
    Zheng, Zhoushun
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2020, 36 (04) : 906 - 936
  • [43] An accurate method for the numerical solution of the Schrodinger equation
    Simos, TE
    MODERN PHYSICS LETTERS A, 1997, 12 (26) : 1891 - 1900
  • [44] SINGLE PEAK SOLUTIONS FOR CRITICAL SCHRODINGER EQUATION IN DIMENSION TWO
    Feng, Weixun
    Qin, Dongdong
    Zhu, Rui
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2025,
  • [45] Numerical solution of the time-dependent Schrodinger equation in one dimension
    Wong, Bernardine Renaldo
    JURNAL FIZIK MALAYSIA, 2007, 28 (1-2): : 29 - 34
  • [46] Numerical solution of fractional-in-space nonlinear Schrodinger equation with the Riesz fractional derivative
    Owolabi, Kolade M.
    Atangana, Abdon
    EUROPEAN PHYSICAL JOURNAL PLUS, 2016, 131 (09):
  • [47] TWO-GRID FINITE ELEMENT METHOD FOR TIME-FRACTIONAL NONLINEAR SCHRODINGER EQUATION
    Hu, Hanzhang
    Chen, Yanping
    Zhou, Jianwei
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2024, 42 (04): : 1124 - 1144
  • [48] Concentration phenomena for a fractional Schrodinger-Kirchhoff type equation
    Ambrosio, Vincenzo
    Isernia, Teresa
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2018, 41 (02) : 615 - 645
  • [49] A new Numerov-type exponentially fitted method for the numerical integration of the Schrodinger equation
    Simos, TE
    HELVETICA PHYSICA ACTA, 1999, 72 (01): : 1 - 22
  • [50] On the Cauchy Problem of Fractional Schrodinger Equation with Hartree Type Nonlinearity
    Cho, Yonggeun
    Hajaiej, Hichem
    Hwang, Gyeongha
    Ozawa, Tohru
    FUNKCIALAJ EKVACIOJ-SERIO INTERNACIA, 2013, 56 (02): : 193 - 224