A numerical method for the fractional Schrodinger type equation of spatial dimension two

被引:28
|
作者
Ford, Neville J. [1 ]
Manuela Rodrigues, M. [2 ]
Vieira, Nelson [3 ,4 ]
机构
[1] Univ Chester, Dept Math, Chester CH1 4BJ, Cheshire, England
[2] Univ Aveiro, Dept Math, CIDMA Ctr Res & Dev Math & Applicat, P-3810193 Aveiro, Portugal
[3] CIDMA Ctr Res & Dev Math & Applicat, P-2411901 Leiria, Portugal
[4] Polytech Inst Leiria, Sch Technol & Management, P-2411901 Leiria, Portugal
关键词
fractional partial differential equation; fractional Schrodinger equation; finite difference method; stability; Mittag-Leffler function; FINITE-PART INTEGRALS; QUANTUM-MECHANICS;
D O I
10.2478/s13540-013-0028-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This work focuses on an investigation of the (n+1)-dimensional time-dependent fractional Schrodinger type equation. In the early part of the paper, the wave function is obtained using Laplace and Fourier transform methods and a symbolic operational form of the solutions in terms of Mittag-Leffler functions is provided. We present an expression for the wave function and for the quantum mechanical probability density. We introduce a numerical method to solve the case where the space component has dimension two. Stability conditions for the numerical scheme are obtained.
引用
收藏
页码:454 / 468
页数:15
相关论文
共 50 条
  • [21] Time independent fractional Schrodinger equation for generalized Mie-type potential in higher dimension framed with Jumarie type fractional derivative
    Das, Tapas
    Ghosh, Uttam
    Sarkar, Susmita
    Das, Shantanu
    JOURNAL OF MATHEMATICAL PHYSICS, 2018, 59 (02)
  • [22] A new Numerov-type method for the numerical solution of the Schrodinger equation
    Simos, T. E.
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2009, 46 (03) : 981 - 1007
  • [23] Numerical method for two dimensional fractional reaction subdiffusion equation
    H. Huang
    X. Cao
    The European Physical Journal Special Topics, 2013, 222 : 1961 - 1973
  • [24] Numerical method for two dimensional fractional reaction subdiffusion equation
    Huang, H.
    Cao, X.
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2013, 222 (08): : 1961 - 1973
  • [25] The Numerical Solution of Fractional Black-Scholes-Schrodinger Equation Using the RBFs Method
    Nualsaard, Naravadee
    Luadsong, Anirut
    Aschariyaphotha, Nitima
    ADVANCES IN MATHEMATICAL PHYSICS, 2020, 2020
  • [26] The time fractional Schrodinger equation with a nonlinearity of Hartree type
    Prado, Humberto
    Ramirez, Jose
    JOURNAL OF EVOLUTION EQUATIONS, 2021, 21 (02) : 1845 - 1864
  • [27] Construct new type solutions for the fractional Schrodinger equation
    Lin, Yuan
    Liu, Weiming
    BOUNDARY VALUE PROBLEMS, 2021, 2021 (01)
  • [28] A generalization of Numerov's method for the numerical solution of the Schrodinger equation in two dimensions
    Konguetsof, A
    Avdelas, G
    Simos, TE
    INTERNATIONAL CONFERENCE ON PARALLEL AND DISTRIBUTED PROCESSING TECHNIQUES AND APPLICATIONS, VOLS I-V, PROCEEDINGS, 1999, : 259 - 264
  • [29] A new two-step hybrid method for the numerical solution of the Schrodinger equation
    Konguetsof, A.
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2010, 47 (02) : 871 - 890
  • [30] A generalization of Numerov's method for the numerical solution of the Schrodinger equation in two dimensions
    Avdelas, G
    Konguetsof, A
    Simos, TE
    COMPUTERS & CHEMISTRY, 2000, 24 (05): : 577 - 584