A numerical method for the fractional Schrodinger type equation of spatial dimension two

被引:28
|
作者
Ford, Neville J. [1 ]
Manuela Rodrigues, M. [2 ]
Vieira, Nelson [3 ,4 ]
机构
[1] Univ Chester, Dept Math, Chester CH1 4BJ, Cheshire, England
[2] Univ Aveiro, Dept Math, CIDMA Ctr Res & Dev Math & Applicat, P-3810193 Aveiro, Portugal
[3] CIDMA Ctr Res & Dev Math & Applicat, P-2411901 Leiria, Portugal
[4] Polytech Inst Leiria, Sch Technol & Management, P-2411901 Leiria, Portugal
关键词
fractional partial differential equation; fractional Schrodinger equation; finite difference method; stability; Mittag-Leffler function; FINITE-PART INTEGRALS; QUANTUM-MECHANICS;
D O I
10.2478/s13540-013-0028-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This work focuses on an investigation of the (n+1)-dimensional time-dependent fractional Schrodinger type equation. In the early part of the paper, the wave function is obtained using Laplace and Fourier transform methods and a symbolic operational form of the solutions in terms of Mittag-Leffler functions is provided. We present an expression for the wave function and for the quantum mechanical probability density. We introduce a numerical method to solve the case where the space component has dimension two. Stability conditions for the numerical scheme are obtained.
引用
收藏
页码:454 / 468
页数:15
相关论文
共 50 条
  • [1] A numerical method for the fractional Schrödinger type equation of spatial dimension two
    Neville J. Ford
    M. Manuela Rodrigues
    Nelson Vieira
    Fractional Calculus and Applied Analysis, 2013, 16 : 454 - 468
  • [2] A conservative numerical method for the fractional nonlinear Schrodinger equation in two dimensions
    Zhang, Rongpei
    Zhang, Yong-Tao
    Wang, Zhen
    Chen, Bo
    Zhang, Yi
    SCIENCE CHINA-MATHEMATICS, 2019, 62 (10) : 1997 - 2014
  • [3] A numerical method for solving the time fractional Schrodinger equation
    Liu, Na
    Jiang, Wei
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2018, 44 (04) : 1235 - 1248
  • [4] Numerical solutions of two-dimensional fractional Schrodinger equation
    A. K. Mittal
    L. K. Balyan
    Mathematical Sciences, 2020, 14 : 129 - 136
  • [5] Numerical solutions of two-dimensional fractional Schrodinger equation
    Mittal, A. K.
    Balyan, L. K.
    MATHEMATICAL SCIENCES, 2020, 14 (02) : 129 - 136
  • [7] A numerical method for fractional Schrodinger equation of Lennard-Jones potential
    Al-Raeei, Marwan
    El-Daher, Moustafa Sayem
    PHYSICS LETTERS A, 2019, 383 (26)
  • [8] Petviashvili Method for the Fractional Schrodinger Equation
    Bayindir, Cihan
    Farazande, Sofi
    Altintas, Azmi Ali
    Ozaydin, Fatih
    FRACTAL AND FRACTIONAL, 2023, 7 (01)
  • [9] Solving the Vlasov equation in two spatial dimensions with the Schrodinger method
    Kopp, Michael
    Vattis, Kyriakos
    Skordis, Constantinos
    PHYSICAL REVIEW D, 2017, 96 (12)
  • [10] Numerical analysis for time-fractional Schrodinger equation on two space dimensions
    Zhang, Jun
    Wang, JinRong
    Zhou, Yong
    ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01)