An Accessible Method for Implementing Hierarchical Models with Spatio-Temporal Abundance Data

被引:27
|
作者
Ross, Beth E. [1 ]
Hooten, Mevin B. [2 ,3 ,4 ]
Koons, David N. [1 ,5 ]
机构
[1] Utah State Univ, Dept Wildland Resources, Logan, UT 84322 USA
[2] US Geol Survey, Colorado Cooperat Fish & Wildlife Res Unit, Ft Collins, CO USA
[3] Colorado State Univ, Dept Fish Wildlife & Conservat Biol, Ft Collins, CO 80523 USA
[4] Colorado State Univ, Dept Stat, Ft Collins, CO 80523 USA
[5] Utah State Univ, Ctr Ecol, Logan, UT 84322 USA
来源
PLOS ONE | 2012年 / 7卷 / 11期
关键词
SPRING CONDITION HYPOTHESIS; SCAUP AYTHYA-AFFINIS; LESSER SCAUP; DENSITY-DEPENDENCE; POPULATION-DYNAMICS; OBSERVATION ERROR; PROCESS NOISE; YUKON FLATS; SURVIVAL; ECOLOGY;
D O I
10.1371/journal.pone.0049395
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
A common goal in ecology and wildlife management is to determine the causes of variation in population dynamics over long periods of time and across large spatial scales. Many assumptions must nevertheless be overcome to make appropriate inference about spatio-temporal variation in population dynamics, such as autocorrelation among data points, excess zeros, and observation error in count data. To address these issues, many scientists and statisticians have recommended the use of Bayesian hierarchical models. Unfortunately, hierarchical statistical models remain somewhat difficult to use because of the necessary quantitative background needed to implement them, or because of the computational demands of using Markov Chain Monte Carlo algorithms to estimate parameters. Fortunately, new tools have recently been developed that make it more feasible for wildlife biologists to fit sophisticated hierarchical Bayesian models (i.e., Integrated Nested Laplace Approximation, 'INLA'). We present a case study using two important game species in North America, the lesser and greater scaup, to demonstrate how INLA can be used to estimate the parameters in a hierarchical model that decouples observation error from process variation, and accounts for unknown sources of excess zeros as well as spatial and temporal dependence in the data. Ultimately, our goal was to make unbiased inference about spatial variation in population trends over time.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Efficient Hierarchical Bayesian Inference for Spatio-temporal Regression Models in Neuroimaging
    Hashemi, Ali
    Gao, Yijing
    Cai, Chang
    Ghosh, Sanjay
    Mueller, Klaus-Robert
    Nagarajan, Srikantan S.
    Haufe, Stefan
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34
  • [32] A practical approach for assessing the effect of grouping in hierarchical spatio-temporal models
    Bruno, Francesca
    Cocchi, Daniela
    Paci, Lucia
    ASTA-ADVANCES IN STATISTICAL ANALYSIS, 2013, 97 (02) : 93 - 108
  • [33] A practical approach for assessing the effect of grouping in hierarchical spatio-temporal models
    Francesca Bruno
    Daniela Cocchi
    Lucia Paci
    AStA Advances in Statistical Analysis, 2013, 97 : 93 - 108
  • [34] Generalized spatio-temporal models
    Cepeda Cuervo, Edilberto
    SORT-STATISTICS AND OPERATIONS RESEARCH TRANSACTIONS, 2011, 35 (02) : 165 - 178
  • [35] Generalized spatio-temporal models
    Cuervo, Edilberto Cepeda
    SORT, 2011, 35 (02): : 165 - 178
  • [36] Spatio-temporal ecological models
    Chen, Qiuwen
    Han, Rui
    Ye, Fei
    Li, Weifeng
    ECOLOGICAL INFORMATICS, 2011, 6 (01) : 37 - 43
  • [37] A hierarchical spatio-temporal data model for dynamic monitoring of land use
    Wang, Hao
    Liu, Yaolin
    GEOINFORMATICS 2007: GEOSPATIAL INFORMATION SCIENCE, PTS 1 AND 2, 2007, 6753
  • [38] HUAD: Hierarchical Urban Anomaly Detection Based on Spatio-Temporal Data
    Kong, Xiangjie
    Gao, Haoran
    Alfarraj, Osama
    Ni, Qichao
    Zheng, Chaofan
    Shen, Guojiang
    IEEE ACCESS, 2020, 8 : 26573 - 26582
  • [39] Hierarchical Spatio-temporal Visual Analysis of Cluster Evolution in Electrocorticography Data
    Murugesan, Sugeerth
    Bouchard, Kristofer
    Chang, Edward
    Dougherty, Max
    Hamann, Bernd
    Weber, Gunther H.
    PROCEEDINGS OF THE 7TH ACM INTERNATIONAL CONFERENCE ON BIOINFORMATICS, COMPUTATIONAL BIOLOGY, AND HEALTH INFORMATICS, 2016, : 630 - 639
  • [40] Toward Implementing Spatio-Temporal RBAC Extensions
    Dubey, Aditya
    Ravi, Uttara
    Sharma, Somya
    Mitra, Barsha
    INFORMATION SYSTEMS SECURITY (ICISS 2019), 2019, 11952 : 59 - 78