An Accessible Method for Implementing Hierarchical Models with Spatio-Temporal Abundance Data

被引:27
|
作者
Ross, Beth E. [1 ]
Hooten, Mevin B. [2 ,3 ,4 ]
Koons, David N. [1 ,5 ]
机构
[1] Utah State Univ, Dept Wildland Resources, Logan, UT 84322 USA
[2] US Geol Survey, Colorado Cooperat Fish & Wildlife Res Unit, Ft Collins, CO USA
[3] Colorado State Univ, Dept Fish Wildlife & Conservat Biol, Ft Collins, CO 80523 USA
[4] Colorado State Univ, Dept Stat, Ft Collins, CO 80523 USA
[5] Utah State Univ, Ctr Ecol, Logan, UT 84322 USA
来源
PLOS ONE | 2012年 / 7卷 / 11期
关键词
SPRING CONDITION HYPOTHESIS; SCAUP AYTHYA-AFFINIS; LESSER SCAUP; DENSITY-DEPENDENCE; POPULATION-DYNAMICS; OBSERVATION ERROR; PROCESS NOISE; YUKON FLATS; SURVIVAL; ECOLOGY;
D O I
10.1371/journal.pone.0049395
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
A common goal in ecology and wildlife management is to determine the causes of variation in population dynamics over long periods of time and across large spatial scales. Many assumptions must nevertheless be overcome to make appropriate inference about spatio-temporal variation in population dynamics, such as autocorrelation among data points, excess zeros, and observation error in count data. To address these issues, many scientists and statisticians have recommended the use of Bayesian hierarchical models. Unfortunately, hierarchical statistical models remain somewhat difficult to use because of the necessary quantitative background needed to implement them, or because of the computational demands of using Markov Chain Monte Carlo algorithms to estimate parameters. Fortunately, new tools have recently been developed that make it more feasible for wildlife biologists to fit sophisticated hierarchical Bayesian models (i.e., Integrated Nested Laplace Approximation, 'INLA'). We present a case study using two important game species in North America, the lesser and greater scaup, to demonstrate how INLA can be used to estimate the parameters in a hierarchical model that decouples observation error from process variation, and accounts for unknown sources of excess zeros as well as spatial and temporal dependence in the data. Ultimately, our goal was to make unbiased inference about spatial variation in population trends over time.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] MULTIPLE OBJECT TRACKING BY HIERARCHICAL ASSOCIATION OF SPATIO-TEMPORAL DATA
    Beleznai, Csaba
    Schreiber, David
    2010 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, 2010, : 41 - 44
  • [22] Adaptive spatio-temporal models for satellite ecological data
    Carlo Grillenzoni
    Journal of Agricultural, Biological, and Environmental Statistics, 2004, 9 : 158 - 180
  • [23] Asymptotic models and inference for extremes of spatio-temporal data
    Turkman, Kamil Feridun
    Turkman, M. A. Amaral
    Pereira, J. M.
    EXTREMES, 2010, 13 (04) : 375 - 397
  • [24] Adaptive spatio-temporal models for satellite ecological data
    Grillenzoni, C
    JOURNAL OF AGRICULTURAL BIOLOGICAL AND ENVIRONMENTAL STATISTICS, 2004, 9 (02) : 158 - 180
  • [25] Factor copula models for data with spatio-temporal dependence
    Krupskii, Pavel
    Genton, Marc G.
    SPATIAL STATISTICS, 2017, 22 : 180 - 195
  • [26] Inference for the Analysis of Ordinal Data with Spatio-Temporal Models
    Peraza-Garay, F.
    Marquez-Urbina, J. U.
    Gonzalez-Farias, G.
    INTERNATIONAL JOURNAL OF BIOSTATISTICS, 2020, 16 (02): : 192 - 225
  • [27] Spatio-temporal Topic Models for Check-in Data
    Liu, Yu
    Ester, Martin
    Hu, Bo
    Cheung, David W.
    2015 IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM), 2015, : 889 - 894
  • [28] Adapting data models for the design of spatio-temporal databases
    Bedard, Y
    Caron, C
    Maamar, Z
    Moulin, B
    Valliere, D
    COMPUTERS ENVIRONMENT AND URBAN SYSTEMS, 1996, 20 (01) : 19 - 41
  • [29] Asymptotic models and inference for extremes of spatio-temporal data
    Kamil Feridun Turkman
    M. A. Amaral Turkman
    J. M. Pereira
    Extremes, 2010, 13 : 375 - 397
  • [30] A Spatio-Temporal Linked Data Representation for Modeling Spatio-Temporal Dialect Data
    Scholz, Johannes
    Hrastnig, Emanual
    Wandl-Vogt, Eveline
    PROCEEDINGS OF WORKSHOPS AND POSTERS AT THE 13TH INTERNATIONAL CONFERENCE ON SPATIAL INFORMATION THEORY (COSIT 2017), 2018, : 275 - 282