Privacy-Preserving String Edit Distance with Moves

被引:1
|
作者
Nakagawa, Shunta [1 ]
Sakamoto, Tokio [2 ]
Takabatake, Yoshimasa [1 ]
Tomohiro, I [1 ]
Shin, Kilho [3 ]
Sakamoto, Hiroshi [1 ]
机构
[1] Kyushu Inst Technol, 680-4 Kawazu, Iizuka, Fukuoka 8208502, Japan
[2] ThomasLab Inc, 680-41 Kawazu, Iizuka, Fukuoka 8200067, Japan
[3] Univ Hyogo, 7-1-28 Minatojima Minami, Kobe, Hyogo 6500047, Japan
关键词
D O I
10.1007/978-3-030-02224-2_18
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose the first two-party protocol for securely computing an extended edit distance. The parties possessing their respective strings x and y want to securely compute the edit distance with move operations (EDM), that is, the minimum number of insertions, deletions, renaming of symbols, or substring moves required to transform x to y. Although computing the exact EDM is NP-hard, there exits an almost linear-time algorithm within the approximation ratio O(lg* N lgN) for N = max{vertical bar x vertical bar, vertical bar y vertical bar}. We extend this algorithm to the privacy-preserving computation enlisting the homomorphic encryption scheme so that the party can obtain the approximate EDM without revealing their privacy under the semi-honest model.
引用
收藏
页码:226 / 240
页数:15
相关论文
共 50 条
  • [41] Privacy-Preserving Statistics
    Vaidya, Jaideep
    COMPUTER, 2018, 51 (09) : 8 - 9
  • [42] A New String Edit Distance and Applications
    Petty, Taylor
    Hannig, Jan
    Huszar, Tunde, I
    Iyer, Hari
    ALGORITHMS, 2022, 15 (07)
  • [43] String reconciliation with unknown edit distance
    Kontorovich, Aryeh
    Trachtenberg, Ari
    2012 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY PROCEEDINGS (ISIT), 2012,
  • [44] Learning string-edit distance
    Ristad, ES
    Yianilos, PN
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1998, 20 (05) : 522 - 532
  • [45] FEDERAL: A Framework for Distance-Aware Privacy-Preserving Record Linkage
    Karapiperis, Dimitrios
    Gkoulalas-Divanis, Aris
    Verykios, Vassilios S.
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2018, 30 (02) : 292 - 304
  • [46] A Distance Measure for Privacy-Preserving Process Mining Based on Feature Learning
    Roesel, Fabian
    Fahrenkog-Petersen, Stephan A.
    van der Aa, Han
    Weidlich, Matthias
    BUSINESS PROCESS MANAGEMENT WORKSHOPS, BPM 2021, 2022, 436 : 73 - 85
  • [47] Privacy-Preserving Graph Encryption for Approximate Constrained Shortest Distance Queries
    Shen, Meng
    Chen, Siqi
    Zhu, Liehuang
    Xiao, Renyi
    Xu, Ke
    Du, Xiaojiang
    2019 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2019,
  • [48] Approximate Two-Party Privacy-Preserving String Matching with Linear Complexity
    Beck, Martin
    Kerschbaum, Florian
    2013 IEEE INTERNATIONAL CONGRESS ON BIG DATA, 2013, : 31 - 37
  • [49] Enabling Privacy-Preserving Shortest Distance Queries on Encrypted Graph Data
    Liu, Chang
    Zhu, Liehuang
    He, Xiangjian
    Chen, Jinjun
    IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, 2021, 18 (01) : 192 - 204
  • [50] Distance-Bounding, Privacy-Preserving Attribute-Based Credentials
    Bosk, Daniel
    Bouget, Simon
    Buchegger, Sonja
    CRYPTOLOGY AND NETWORK SECURITY, CANS 2020, 2020, 12579 : 147 - 166