Privacy-Preserving String Edit Distance with Moves

被引:1
|
作者
Nakagawa, Shunta [1 ]
Sakamoto, Tokio [2 ]
Takabatake, Yoshimasa [1 ]
Tomohiro, I [1 ]
Shin, Kilho [3 ]
Sakamoto, Hiroshi [1 ]
机构
[1] Kyushu Inst Technol, 680-4 Kawazu, Iizuka, Fukuoka 8208502, Japan
[2] ThomasLab Inc, 680-41 Kawazu, Iizuka, Fukuoka 8200067, Japan
[3] Univ Hyogo, 7-1-28 Minatojima Minami, Kobe, Hyogo 6500047, Japan
关键词
D O I
10.1007/978-3-030-02224-2_18
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose the first two-party protocol for securely computing an extended edit distance. The parties possessing their respective strings x and y want to securely compute the edit distance with move operations (EDM), that is, the minimum number of insertions, deletions, renaming of symbols, or substring moves required to transform x to y. Although computing the exact EDM is NP-hard, there exits an almost linear-time algorithm within the approximation ratio O(lg* N lgN) for N = max{vertical bar x vertical bar, vertical bar y vertical bar}. We extend this algorithm to the privacy-preserving computation enlisting the homomorphic encryption scheme so that the party can obtain the approximate EDM without revealing their privacy under the semi-honest model.
引用
收藏
页码:226 / 240
页数:15
相关论文
共 50 条
  • [21] Secure Approximate String Matching for Privacy-Preserving Record Linkage
    Essex, Aleksander
    IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2019, 14 (10) : 2623 - 2632
  • [22] Privacy-Preserving Biometric Verification With Handwritten Random Digit String
    Zhang, Peirong
    Liu, Yuliang
    Lai, Songxuan
    Li, Hongliang
    Jin, Lianwen
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2025, 47 (04) : 3049 - 3066
  • [23] Location Privacy-Preserving Distance Computation for Spatial Crowdsourcing
    Han, Song
    Lin, Jianhong
    Zhao, Shuai
    Xu, Guangquan
    Ren, Siqi
    He, Daojing
    Wang, Licheng
    Shi, Leyun
    IEEE INTERNET OF THINGS JOURNAL, 2020, 7 (08): : 7550 - 7563
  • [24] Privacy-Preserving String Comparisons in Record Linkage Systems: A Review
    Trepetin, Stanley
    INFORMATION SECURITY JOURNAL, 2008, 17 (5-6): : 253 - 266
  • [25] Approximating Tree Edit Distance through String Edit Distance
    Akutsu, Tatsuya
    Fukagawa, Daiji
    Takasu, Atsuhiro
    ALGORITHMICA, 2010, 57 (02) : 325 - 348
  • [26] Approximating Tree Edit Distance through String Edit Distance
    Tatsuya Akutsu
    Daiji Fukagawa
    Atsuhiro Takasu
    Algorithmica, 2010, 57 : 325 - 348
  • [27] The greedy algorithm for edit distance with moves
    Kaplan, H
    Shafrir, N
    INFORMATION PROCESSING LETTERS, 2006, 97 (01) : 23 - 27
  • [28] Neural String Edit Distance
    Libovicky, Jindrich
    Fraser, Alexander
    PROCEEDINGS OF THE SIXTH WORKSHOP ON STRUCTURED PREDICTION FOR NLP (SPNLP 2022), 2022, : 52 - 66
  • [29] Achieving Privacy-Preserving Discrete Frechet Distance Range Queries
    Guan, Yunguo
    Lu, Rongxing
    Zheng, Yandong
    Zhang, Songnian
    Shao, Jun
    Wei, Guiyi
    IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, 2023, 20 (03) : 2097 - 2110
  • [30] Privacy-Preserving Data Sharing by Integrating Perturbed Distance Matrices
    Chang H.
    Ando H.
    SN Computer Science, 2020, 1 (3)