SYMMETRIZATION AND EXTENSION OF PLANAR BI-LIPSCHITZ MAPS

被引:2
|
作者
Kovalev, Leonid V. [1 ]
机构
[1] Syracuse Univ, Math Dept, 215 Carnegie, Syracuse, NY 13244 USA
基金
美国国家科学基金会;
关键词
BILIPSCHITZ EXTENSION;
D O I
10.5186/aasfm.2018.4335
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that every centrally symmetric bi-Lipschitz embedding of the circle into the plane can be extended to a global bi-Lipschitz map of the plane with linear bounds on the distortion. This answers a question of Daneri and Pratelli in the special case of centrally symmetric maps. For general bi-Lipschitz embeddings our distortion bound has a combination of linear and cubic growth, which improves on the prior results. The proof involves a symmetrization result for bi-Lipschitz maps which may be of independent interest.
引用
收藏
页码:541 / 556
页数:16
相关论文
共 50 条
  • [41] Bi-Lipschitz geometry of quasiconformal trees
    David, Guy C.
    Vellis, Vyron
    ILLINOIS JOURNAL OF MATHEMATICS, 2022, 66 (02) : 189 - 244
  • [42] On the Bi-Lipschitz Geometry of Lamplighter Graphs
    F. Baudier
    P. Motakis
    Th. Schlumprecht
    A. Zsák
    Discrete & Computational Geometry, 2021, 66 : 203 - 235
  • [43] On the Bi-Lipschitz Geometry of Lamplighter Graphs
    Baudier, F.
    Motakis, P.
    Schlumprecht, Th.
    Zsak, A.
    DISCRETE & COMPUTATIONAL GEOMETRY, 2021, 66 (01) : 203 - 235
  • [44] Bi-Lipschitz Characterization of Space Curves
    Fernandes, Alexandre
    Jelonek, Zbigniew
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2023, 54 (03):
  • [45] Bi-Lipschitz parts of quasisymmetric mappings
    Azzam, Jonas
    REVISTA MATEMATICA IBEROAMERICANA, 2016, 32 (02) : 589 - 648
  • [46] Multiplicity of singularities is not a bi-Lipschitz invariant
    Birbrair, Lev
    Fernandes, Alexandre
    Edson Sampaio, J.
    Verbitsky, Misha
    MATHEMATISCHE ANNALEN, 2020, 377 (1-2) : 115 - 121
  • [47] BI-LIPSCHITZ EMBEDDING OF PROJECTIVE METRICS
    Kovalev, Leonid V.
    CONFORMAL GEOMETRY AND DYNAMICS, 2014, 18 : 110 - 118
  • [48] Multiplicity of singularities is not a bi-Lipschitz invariant
    Lev Birbrair
    Alexandre Fernandes
    J. Edson Sampaio
    Misha Verbitsky
    Mathematische Annalen, 2020, 377 : 115 - 121
  • [49] Bi-Lipschitz Characterization of Space Curves
    Alexandre Fernandes
    Zbigniew Jelonek
    Bulletin of the Brazilian Mathematical Society, New Series, 2023, 54
  • [50] BI-LIPSCHITZ EMBEDDINGS OF QUASICONFORMAL TREES
    David, Guy c.
    Eriksson-bique, S. Y. L. V. E. S. T. E. R.
    Vellis, V. Y. R. O. N.
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2023, : 2031 - 2044