SYMMETRIZATION AND EXTENSION OF PLANAR BI-LIPSCHITZ MAPS

被引:2
|
作者
Kovalev, Leonid V. [1 ]
机构
[1] Syracuse Univ, Math Dept, 215 Carnegie, Syracuse, NY 13244 USA
基金
美国国家科学基金会;
关键词
BILIPSCHITZ EXTENSION;
D O I
10.5186/aasfm.2018.4335
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that every centrally symmetric bi-Lipschitz embedding of the circle into the plane can be extended to a global bi-Lipschitz map of the plane with linear bounds on the distortion. This answers a question of Daneri and Pratelli in the special case of centrally symmetric maps. For general bi-Lipschitz embeddings our distortion bound has a combination of linear and cubic growth, which improves on the prior results. The proof involves a symmetrization result for bi-Lipschitz maps which may be of independent interest.
引用
收藏
页码:541 / 556
页数:16
相关论文
共 50 条