SYMMETRIZATION AND EXTENSION OF PLANAR BI-LIPSCHITZ MAPS

被引:2
|
作者
Kovalev, Leonid V. [1 ]
机构
[1] Syracuse Univ, Math Dept, 215 Carnegie, Syracuse, NY 13244 USA
基金
美国国家科学基金会;
关键词
BILIPSCHITZ EXTENSION;
D O I
10.5186/aasfm.2018.4335
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that every centrally symmetric bi-Lipschitz embedding of the circle into the plane can be extended to a global bi-Lipschitz map of the plane with linear bounds on the distortion. This answers a question of Daneri and Pratelli in the special case of centrally symmetric maps. For general bi-Lipschitz embeddings our distortion bound has a combination of linear and cubic growth, which improves on the prior results. The proof involves a symmetrization result for bi-Lipschitz maps which may be of independent interest.
引用
收藏
页码:541 / 556
页数:16
相关论文
共 50 条
  • [1] A planar bi-Lipschitz extension theorem
    Daneri, Sara
    Pratelli, Aldo
    ADVANCES IN CALCULUS OF VARIATIONS, 2015, 8 (03) : 221 - 266
  • [2] On the extension of bi-Lipschitz mappings
    Lev Birbrair
    Alexandre Fernandes
    Zbigniew Jelonek
    Selecta Mathematica, 2021, 27
  • [3] AN INVARIANT OF BI-LIPSCHITZ MAPS
    MOVAHEDILANKARANI, H
    FUNDAMENTA MATHEMATICAE, 1993, 143 (01) : 1 - 9
  • [4] On the extension of bi-Lipschitz mappings
    Birbrair, Lev
    Fernandes, Alexandre
    Jelonek, Zbigniew
    SELECTA MATHEMATICA-NEW SERIES, 2021, 27 (02):
  • [5] Dimensions of Fractals Generated by Bi-Lipschitz Maps
    Deng, Rong
    Ngai, Sze-Man
    ABSTRACT AND APPLIED ANALYSIS, 2014,
  • [6] BI-LIPSCHITZ CONCORDANCE IMPLIES BI-LIPSCHITZ ISOTOPY
    LUUKKAINEN, J
    MONATSHEFTE FUR MATHEMATIK, 1991, 111 (01): : 35 - 46
  • [7] Square functions for bi-Lipschitz maps and directional operators
    Di Plinio, Francesco
    Guo, Shaoming
    Thiele, Christoph
    Zorin-Kranich, Pavel
    JOURNAL OF FUNCTIONAL ANALYSIS, 2018, 275 (08) : 2015 - 2058
  • [8] Lipschitz and Bi-Lipschitz Maps from PI Spaces to Carnot Groups
    David, Guy C.
    Kinneberg, Kyle
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2020, 69 (05) : 1685 - 1731
  • [9] On the approximation of bi-Lipschitz maps by invertible neural networks
    Jin, Bangti
    Zhou, Zehui
    Zou, Jun
    NEURAL NETWORKS, 2024, 174
  • [10] Transitive Bi-Lipschitz Group Actions and Bi-Lipschitz Parameterizations
    Freeman, David M.
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2013, 62 (01) : 311 - 331