Non-isothermal model experiments and numerical simulations for directional solidification of multicrystalline silicon in a traveling magnetic field

被引:27
|
作者
Dadzis, K. [1 ]
Niemietz, K. [2 ]
Paetzold, O. [2 ]
Wunderwald, U. [3 ]
Friedrich, J. [3 ,4 ]
机构
[1] SolarWorld Innovat GmbH, D-09599 Freiberg, Germany
[2] TU Bergakad Freiberg, Inst F NE Met & Reinststoffe, D-09599 Freiberg, Germany
[3] Fraunhofer THM, D-09599 Freiberg, Germany
[4] Fraunhofer IISB, Dept Crystal Growth, D-91058 Erlangen, Germany
关键词
Computer simulation; Fluid flows; Magnetic fields; Stirring; Bridgman technique; VERTICAL TEMPERATURE-GRADIENT; DRIVEN-CAVITY; FLOW; TRANSPORT; GROWTH; MELT;
D O I
10.1016/j.jcrysgro.2013.02.030
中图分类号
O7 [晶体学];
学科分类号
0702 ; 070205 ; 0703 ; 080501 ;
摘要
A new experimental setup containing a GaInSn melt with a square horizontal cross section of 10 x 10 cm(2) and a variable melt height up to 10 cm has been developed. The melt is positioned in the center of a coil system generating a traveling magnetic field (TMF). Using a cooling system at the bottom and a heating system at the top of the melt, a vertical temperature difference up to approximately 50 K can be applied to the melt, imitating the thermal conditions during the directional solidification of multicrystalline silicon. Direct measurements of the time-dependent velocity and the temperature profiles were performed using ultrasonic Doppler velocimetry and thermocouples, respectively. Complementary three-dimensional (3D) numerical simulations of the model experiments were used to validate the numerical tools and to gain a deeper insight into the characteristics of TMF flows in square melts. The classical toroidal flow structure known from isothermal cylindrical melts is shown to obtain a large horizontal central vortex at a small height of the square melt, whereas a distinct 3D asymmetry appears at a large height. A vertical temperature gradient tends to suppress the vertical melt motion and leads to new complex horizontal flow structures. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:145 / 156
页数:12
相关论文
共 50 条
  • [31] Numerical simulations of a confined channel flow driven by non-isothermal wall injection
    Fournier, C
    Michard, M
    Bataille, F
    PROGRESS IN COMPUTATIONAL FLUID DYNAMICS, 2006, 6 (1-3): : 129 - 136
  • [32] Directional solidification of polycrystalline silicon in non-uniform thermal field
    Zhu, Xu-Li
    Hong, Yong-Qiang
    Rengong Jingti Xuebao/Journal of Synthetic Crystals, 2015, 44 (08): : 2260 - 2265
  • [33] Non-isothermal thermomechanical metallurgical model and its application to welding simulations
    Schenk, T.
    Richardson, I. M.
    Kraska, M.
    Ohnimus, S.
    SCIENCE AND TECHNOLOGY OF WELDING AND JOINING, 2009, 14 (02) : 152 - 160
  • [34] Scale up aspects of directional solidification and Czochralski silicon growth processes in traveling magnetic fields
    Dropka, Natasha
    Ervik, Torunn
    Czupalla, Matthias
    Kiessling, Frank M.
    JOURNAL OF CRYSTAL GROWTH, 2016, 451 : 95 - 102
  • [35] Pitches pyrolysis kinetics: non-isothermal heat treatments, experiments and model
    Castets, K
    Daguerre, E
    Py, X
    FUEL, 2001, 80 (14) : 2075 - 2083
  • [36] Phase field simulation for non-isothermal solidification of multicomponent alloys coupled with thermodynamics database
    Zhang, Shu-zhou
    Zhang, Rui-jie
    Qu, Xuan-hui
    Fang, Wei
    Liu, Ming-zhi
    TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA, 2013, 23 (08) : 2361 - 2367
  • [37] PHASE FIELD SIMULATION OF EQUIAXED DENDRITIC GROWTH DURING NON-ISOTHERMAL POLYCRYSTALLINE SOLIDIFICATION
    Li, J. J.
    Wang, J. C.
    Wu, L. Y.
    Yang, G. C.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2010, 24 (15-16): : 2762 - 2767
  • [38] A kernel-driven model of effective directional emissivity for non-isothermal surfaces
    Su, LH
    Li, XW
    Friedl, M
    Strahler, A
    Gu, XF
    PROGRESS IN NATURAL SCIENCE-MATERIALS INTERNATIONAL, 2002, 12 (08) : 603 - 607
  • [39] A kernel-driven model of effective directional emissivity for non-isothermal surfaces
    Mark FRIEDL
    Alan STRAHLER
    ProgressinNaturalScience, 2002, (08) : 45 - 49
  • [40] Kernel-driven model of effective directional emissivity for non-isothermal surfaces
    Su, Lihong
    Li, Xiaowen
    Friedl, Mark
    Strahler, Alan
    Gu, Xingfa
    Progress in Natural Science, 2002, 12 (08)