Inequalities for n-class of functions using the Saigo fractional integral operator

被引:22
|
作者
Khan, Hasib [1 ,2 ]
Tunc, Cemil [3 ]
Baleanu, Dumitru [1 ,4 ,5 ]
Khan, Aziz [6 ]
Alkhazzan, Abdulwasea [7 ]
机构
[1] Hohai Univ, Coll Engn Mech & Mat, Nanjing 211100, Jiangsu, Peoples R China
[2] Shaheed Benazir Bhutto Univ, Dept Math, Dir Upper 18000, Khyber Pakhtunk, Pakistan
[3] Van Yuzuncu Yil Univ, Dept Math, Fac Sci, TR-65080 Van, Turkey
[4] Cankaya Univ, Dept Math, TR-06530 Ankara, Turkey
[5] Inst Space Sci, POB MG 23, Magurele 76900, Romania
[6] Univ Peshawar, Dept Math, Peshawar 25000, Khyber Pakhtunk, Pakistan
[7] Hohai Univ, Sch Sci, Dept Math, Nanjing 210098, Jiangsu, Peoples R China
关键词
Minkowski's inequality; Saigo fractional integral operator; Integral inequalities;
D O I
10.1007/s13398-019-00624-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The role of fractional integral operators can be found as one of the best ways to generalize the classical inequalities. In this paper, we use the Saigo fractional integral operator to produce some inequalities for a class of n-decreasing positive functions. The results are more general than the available classical results in the literature.
引用
收藏
页码:2407 / 2420
页数:14
相关论文
共 50 条
  • [41] Fractional Newton-type integral inequalities for the Caputo fractional operator
    Mahajan, Yukti
    Nagar, Harish
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2025, 48 (04) : 5244 - 5254
  • [42] Tempered Fractional Integral Inequalities for Convex Functions
    Rahman, Gauhar
    Nisar, Kottakkaran Sooppy
    Abdeljawad, Thabet
    MATHEMATICS, 2020, 8 (04)
  • [43] Fractional Integral Inequalities for Some Convex Functions
    Bayraktar, B. R.
    Attaev, A. Kh
    BULLETIN OF THE KARAGANDA UNIVERSITY-MATHEMATICS, 2021, 104 (04): : 14 - 27
  • [44] Results on integral inequalities for a generalized fractional integral operator unifying two existing fractional integral operators
    Paul, Supriya Kumar
    Mishra, Lakshmi Narayan
    Mishra, Vishnu Narayan
    NONLINEAR ANALYSIS-MODELLING AND CONTROL, 2024, 29 (06): : 1080 - 1105
  • [45] Fractional integral inequalities for h-convex functions via Caputo-Fabrizio operator
    Chen, Lanxin
    Zhang, Junxian
    Saleem, Muhammad Shoaib
    Ahmed, Imran
    Waheed, Shumaila
    Pan, Lishuang
    AIMS MATHEMATICS, 2021, 6 (06): : 6377 - 6389
  • [46] Some New Inequalities Involving Generalized Fractional Integral Operators for Several Class of Functions
    Set, Erhan
    Gozpinar, Abdurrahman
    INTERNATIONAL CONFERENCE ON ADVANCES IN NATURAL AND APPLIED SCIENCES (ICANAS 2017), 2017, 1833
  • [47] Some Inequalities for a New Class of Convex Functions with Applications via Local Fractional Integral
    Ge-JiLe, Hu
    Rashid, Saima
    Farooq, Fozia Bashir
    Sultana, Sobia
    JOURNAL OF FUNCTION SPACES, 2021, 2021
  • [48] Fractional Minkowski-Type Integral Inequalities via the Unified Generalized Fractional Integral Operator
    Gao, Tingmei
    Farid, Ghulam
    Ahmad, Ayyaz
    Luangboon, Waewta
    Nonlaopon, Kamsing
    JOURNAL OF FUNCTION SPACES, 2022, 2022
  • [49] WEIGHTED INTEGRAL-INEQUALITIES FOR THE HARDY TYPE OPERATOR AND THE FRACTIONAL MAXIMAL OPERATOR
    LAI, QS
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1994, 49 : 244 - 266
  • [50] Some New Chebyshev and Gruss-type Integral Inequalities for Saigo Fractional Integral Operators and Their q-analogues
    Yang, Wengui
    FILOMAT, 2015, 29 (06) : 1269 - 1289