Inequalities for n-class of functions using the Saigo fractional integral operator

被引:22
|
作者
Khan, Hasib [1 ,2 ]
Tunc, Cemil [3 ]
Baleanu, Dumitru [1 ,4 ,5 ]
Khan, Aziz [6 ]
Alkhazzan, Abdulwasea [7 ]
机构
[1] Hohai Univ, Coll Engn Mech & Mat, Nanjing 211100, Jiangsu, Peoples R China
[2] Shaheed Benazir Bhutto Univ, Dept Math, Dir Upper 18000, Khyber Pakhtunk, Pakistan
[3] Van Yuzuncu Yil Univ, Dept Math, Fac Sci, TR-65080 Van, Turkey
[4] Cankaya Univ, Dept Math, TR-06530 Ankara, Turkey
[5] Inst Space Sci, POB MG 23, Magurele 76900, Romania
[6] Univ Peshawar, Dept Math, Peshawar 25000, Khyber Pakhtunk, Pakistan
[7] Hohai Univ, Sch Sci, Dept Math, Nanjing 210098, Jiangsu, Peoples R China
关键词
Minkowski's inequality; Saigo fractional integral operator; Integral inequalities;
D O I
10.1007/s13398-019-00624-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The role of fractional integral operators can be found as one of the best ways to generalize the classical inequalities. In this paper, we use the Saigo fractional integral operator to produce some inequalities for a class of n-decreasing positive functions. The results are more general than the available classical results in the literature.
引用
收藏
页码:2407 / 2420
页数:14
相关论文
共 50 条
  • [31] SOME INTEGRAL INEQUALITIES THROUGH TEMPERED FRACTIONAL INTEGRAL OPERATOR
    Gul, Erdal
    Yalcin, Abdullatif
    COMMUNICATIONS FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND STATISTICS, 2024, 73 (02): : 399 - 409
  • [32] Multivalent functions associated with Srivastava-Saigo-Owa fractional differintegral operator
    Mostafa, Adela O.
    Aouf, Mohamed K.
    Zayed, Hanaa M.
    Bulboaca, Teodor
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2018, 112 (04) : 1409 - 1429
  • [33] New Fractional Integral Inequalities for Convex Functions Pertaining to Caputo-Fabrizio Operator
    Sahoo, Soubhagya Kumar
    Mohammed, Pshtiwan Othman
    Kodamasingh, Bibhakar
    Tariq, Muhammad
    Hamed, Y. S.
    FRACTAL AND FRACTIONAL, 2022, 6 (03)
  • [34] SOME INEQUALITIES FOR B-1-CONVEX FUNCTIONS VIA FRACTIONAL INTEGRAL OPERATOR
    Yesilce, I
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2019, 9 (03): : 620 - 625
  • [35] New fractional integral inequalities for preinvex functions involving Caputo-Fabrizio operator
    Tariq, Muhammad
    Ahmad, Hijaz
    Shaikh, Abdul Ghafoor
    Sahoo, Soubhagya Kumar
    Khedher, Khaled Mohamed
    Gia, Tuan Nguyen
    AIMS MATHEMATICS, 2021, 7 (03): : 3440 - 3455
  • [36] Fractional Hermite-Hadamard Integral Inequalities for a New Class of Convex Functions
    Mohammed, Pshtiwan Othman
    Abdeljawad, Thabet
    Zeng, Shengda
    Kashuri, Artion
    SYMMETRY-BASEL, 2020, 12 (09):
  • [37] Parameterized Quantum Fractional Integral Inequalities Defined by Using n-Polynomial Convex Functions
    Liko, Rozana
    Srivastava, Hari Mohan
    Mohammed, Pshtiwan Othman
    Kashuri, Artion
    Al-Sarairah, Eman
    Sahoo, Soubhagya Kumar
    Soliman, Mohamed S. S.
    AXIOMS, 2022, 11 (12)
  • [38] Weighted Inequalities of Weak Type for the Fractional Integral Operator
    Rakotondratsimba, Y.
    ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 1998, 17 (01): : 115 - 134
  • [39] New fractional integral inequalities associated with pathway operator
    Daiya, Jitendra
    Ram, Jeta
    Saxena, R. K.
    ACTA ET COMMENTATIONES UNIVERSITATIS TARTUENSIS DE MATHEMATICA, 2015, 19 (02): : 121 - 126
  • [40] Estimation of Integral Inequalities Using the Generalized Fractional Derivative Operator in the Hilfer Sense
    Rashid, Saima
    Ashraf, Rehana
    Nisar, Kottakkaran Sooppy
    Abdeljawad, Thabet
    JOURNAL OF MATHEMATICS, 2020, 2020