Surface Parameters Retrieval from Fully Bistatic Radar Scattering Data

被引:4
|
作者
Yang, Ying [1 ,2 ]
Chen, Kun-Shan [1 ,3 ]
Shang, Guofei [3 ]
机构
[1] Chinese Acad Sci, Inst Remote Sensing & Digital Earth, State Key Lab Remote Sensing Sci, Beijing 100101, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100190, Peoples R China
[3] Hebei GEO Univ, Sch Land Resources & Urban & Rural Planning, Shijiazhuang 050031, Hebei, Peoples R China
基金
中国国家自然科学基金;
关键词
bistatic radar scattering; random media; parameter inversion; neural network; MICROWAVE DIELECTRIC BEHAVIOR; NEURAL-NETWORK; MULTIPLE-SCATTERING; SNOW PARAMETERS; SOIL-MOISTURE; ROUGH-SURFACE; WET SOIL; INVERSION; BACKSCATTERING; EMISSION;
D O I
10.3390/rs11050596
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Fully bistatic radar scattering from rough surfaces is of vital importance in terrain remote sensing, but results in bulky data volume. The scattering is dependent on physical parameters of the media and is controlled by the radar observation geometry. Together, the two sets of parameters determine the scattering patterns in a bistatic plane confined by incident and polar angles in both incident and scattering directions. For radar remote sensing, it is desirable to infer surface parameters of interest, with satisfactory accuracy, from large volumes of measured data sets. This is essentially a task of data mining. In this paper, we present model-generated bistatic radar scattering data, followed by a sensitivity analysis, to identify a suitable configuration in terms of parameter inversion from fully bistatic measurements by a Kalman filter-trained dynamic learning neural network (DLNN). Results indicate that with bistatic observation, superior retrieval performance (as compared to backscattering observation) can be readily achieved.
引用
收藏
页数:18
相关论文
共 50 条
  • [31] SURFACE ESTIMATION IN BISTATIC RADAR ALTIMETRE
    Picardi, Giovanni
    Masdea, Arturo
    Melacci, Pietro Tito
    Seu, R.
    2008 IEEE RADAR CONFERENCE, VOLS. 1-4, 2008, : 1287 - +
  • [32] A New Reflectivity Index for the Retrieval of Surface Soil Moisture From Radar Data
    Zribi, Mehrez
    Foucras, Myriam
    Baghdadi, Nicolas
    Demarty, Jerome
    Muddu, Sekhar
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2021, 14 : 818 - 826
  • [33] Studies of Ocean Surface Profile Retrieval from Simulated LGA Radar Data
    Pan, Guangdong
    Burkholder, Robert J.
    Johnson, Joel T.
    Toporkov, Jakov V.
    Sletten, Mark A.
    2006 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS 1-8, 2006, : 1335 - +
  • [34] Multidimensional Parameters Estimation for Bistatic MIMO Radar
    Gong, Jian
    Lv, Hongqing
    Guo, Yiduo
    2011 7TH INTERNATIONAL CONFERENCE ON WIRELESS COMMUNICATIONS, NETWORKING AND MOBILE COMPUTING (WICOM), 2011,
  • [35] An Empirical Approach for the Retrieval of Ocean Wave Parameters from Synthetic Aperture Radar Data
    Schulz-Stellenfleth, Johannes
    Koenig, Thomas
    Lehner, Susanne
    2006 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS 1-8, 2006, : 1875 - 1878
  • [36] Another surface scattering model for bistatic scattering
    Liu, WY
    Fung, AK
    Chen, KS
    IGARSS 2001: SCANNING THE PRESENT AND RESOLVING THE FUTURE, VOLS 1-7, PROCEEDINGS, 2001, : 2916 - 2918
  • [37] Image simulation of high resolution radar for fully polarimetric scattering from heterogeneous canopy surface
    Jin, YQ
    Zhang, W
    CHINESE JOURNAL OF ELECTRONICS, 2000, 9 (03): : 332 - 336
  • [38] Modeling and Analysis of Bistatic Scattering from Forests in Support of Soil Moisture Retrieval
    Azemati, Amir
    Moghaddam, Mahta
    2017 IEEE INTERNATIONAL SYMPOSIUM ON ANTENNAS AND PROPAGATION & USNC/URSI NATIONAL RADIO SCIENCE MEETING, 2017, : 1833 - 1834
  • [39] Fully Polarimetric Bistatic Radar Calibration With Modified Dihedral Objects
    Beaudoin, C.
    Horgan, T.
    DeMartinis, G.
    Coulombe, M. J.
    Gatesman, A. J.
    Nixon, W. E.
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2018, 66 (02) : 937 - 950
  • [40] Theoretical Study of Global Sensitivity Analysis of L-Band Radar Bistatic Scattering for Soil Moisture Retrieval
    Zeng, Jiangyuan
    Chen, Kun-Shan
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2018, 15 (11) : 1710 - 1714